Nothing
#' Power for detecting treatment effect heterogeneity in a cluster randomized trial with a continuous outcome
#'
#' @description
#' This function performs power and sample size calculations for detecting a treatment-by-covariate
#' interaction effect in a two-arm cluster randomized trial
#' with a continuous outcome when the data will be analyzed using a linear mixed effects model
#' (random intercept for cluster and fixed effect for the treatment-by-covariate interaction).
#' Can solve for power, beta, J1, J.ratio or m.
#'
#'
#' @details
#' This function is based on Yang et al (2020). If the covariate is a cluster-level covariate,
#' then icc.x should be set to 1 (the covariate does not vary within cluster).
#'
#' Yang S, Li F, Starks MA, Hernandez AF, Mentz RJ, Choudhury KR (2020) Sample size requirements for detecting
#' treatment effect heterogeneity in cluster randomized trials. Statistics in Medicine 39:4218-4237.
#'
#'
#'
#' @param m The number of subjects per cluster.
#' @param J1 The number of clusters in arm 1.
#' @param J.ratio The ratio J2/J1 between the number of clusters in the two arms; defaults to 1 (equal clusters per arm).
#' @param beta The regression coefficient for the treatment-by-covariate interaction term.
#' @param sd.x The standard deviation of the covariate.
#' @param sd.yx The standard deviation of the outcome variable adjusting for the covariate.
#' @param icc.x The intraclass correlation coefficient for the covariate; defaults to 0.
#' @param icc.yx The intraclass correlation coefficient for the outcome adjusting for the covariate; defaults to 0.
#' @param alpha The significance level (type 1 error rate); defaults to 0.05.
#' @param power The specified level of power.
#' @param sides Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
#' @param v Either TRUE for verbose output or FALSE (default) to output computed argument only.
#'
#' @return A list of the arguments (including the computed one).
#' @export
#'
#' @examples
#' crt.parallel.hte(beta = 1, m = 27, J1 = 20, sd.x = 12.7, sd.yx = 71, icc.x = 0.08, icc.yx = 0.04)
crt.parallel.hte <- function (m = NULL, J1 = NULL, J.ratio = 1, beta = NULL,
sd.x = NULL, sd.yx = NULL,
icc.x = 0, icc.yx = 0,
alpha = 0.05, power = NULL, sides = 2,
v = FALSE) {
# Check if the arguments are specified correctly
check.many(list(m, J1, J.ratio, beta, alpha, power), "oneof")
check.param(m, "pos")
check.param(J.ratio, "pos")
check.param(J1, "min", min = 2)
if (!is.null(J1) & !is.null(J.ratio))
check.param(J1 * J.ratio, "min", min = 2)
check.param(beta, "num")
check.param(sd.x, "req"); check.param(sd.x, "pos")
check.param(sd.yx, "req"); check.param(sd.yx, "pos")
check.param(icc.x, "req"); check.param(icc.x, "unitii")
check.param(icc.yx, "req"); check.param(icc.yx, "uniti")
check.param(alpha, "unit")
check.param(power, "unit")
check.param(sides, "req"); check.param(sides, "vals", valslist = c(1, 2))
check.param(v, "req"); check.param(v, "bool")
# Calculate power
p.body <- quote({
sd.w <- sqrt(J.ratio) / (1 + J.ratio)
J <- J1 + J1 * J.ratio
A <- (abs(beta) * sd.w * sd.x)
B <- sd.yx * sqrt(((1 - icc.yx) * (1 + (m-1) * icc.yx)) / (J * m * (1 + (m-2) * icc.yx - (m-1) * icc.x * icc.yx)))
stats::pnorm(stats::qnorm(alpha / sides) + A / B)
})
# Use uniroot to calculate missing argument
if (is.null(alpha)) {
alpha <- stats::uniroot(function(alpha) eval(p.body) - power, c(1e-10, 1 - 1e-10))$root
if (!v) return(alpha)
}
else if (is.null(power)) {
power <- eval(p.body)
if (!v) return(power)
}
else if (is.null(J1)) {
J1 <- stats::uniroot(function(J1) eval(p.body) - power, c(2 + 1e-10, 1e+07))$root
if (!v) return(J1)
}
else if (is.null(J.ratio)) {
J.ratio <- stats::uniroot(function(J.ratio) eval(p.body) - power, c(1e-10, 1e+07))$root
if (!v) return(J.ratio)
}
else if (is.null(m)) {
m <- stats::uniroot(function(m) eval(p.body) - power, c(2, 1e+07))$root
if (!v) return(m)
}
else if (is.null(beta)) {
beta <- stats::uniroot(function(beta) eval(p.body) - power, c(1e-07, 1e+07))$root
if (!v) return(beta)
}
# Generate output text
METHOD <- "Power for treatment-by-covariate interaction in a cluster randomized trial with a continuous outcome"
J <- c(J1, J1 * J.ratio)
sd <- c(sd.x, sd.yx)
icc <- c(icc.x, icc.yx)
out <- list(m = m, `J1, J2` = J, beta = beta, `sd.x, sd.yx` = sd, `icc.x, icc.yx` = icc,
alpha = alpha, power = power, sides = sides, method = METHOD)
# Print output as a power.htest object
structure(out, class = "power.htest")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.