mod: Integer Division

View source: R/modular.R

mod, remR Documentation

Integer Division

Description

Integer division functions and remainders

Usage

mod(n, m)
rem(n, m)

idivide(n, m, rounding = c("fix", "floor", "ceil", "round"))

Arguments

n

numeric vector (preferably of integers)

m

must be a scalar integer (positive, zero, or negative)

rounding

rounding mode.

Details

mod(n, m) is the modulo operator and returns n\,mod\,m. mod(n, 0) is n, and the result always has the same sign as m.

rem(n, m) is the same modulo operator and returns n\,mod\,m. mod(n, 0) is NaN, and the result always has the same sign as n.

idivide(n, m) is integer division, with the same effect as n %/% m or using an optional rounding mode.

Value

a numeric (integer) value or vector/matrix.

Note

The following relation is fulfilled (for m != 0):

mod(n, m) = n - m * floor(n/m)

See Also

Binary R operators %/% and %%.

Examples

mod(c(-5:5), 5)
rem(c(-5:5), 5)

idivide(c(-2, 2), 3, "fix")     #  0 0
idivide(c(-2, 2), 3, "floor")   # -1 0
idivide(c(-2, 2), 3, "ceil")    #  0 1
idivide(c(-2, 2), 3, "round")   # -1 1

pracma documentation built on Nov. 10, 2023, 1:14 a.m.