nearest_spd: Nearest Symmetric Positive-definite Matrix

Description Usage Arguments Details Value References See Also Examples

View source: R/nearest_spd.R

Description

Find nearest (in Frobenius norm) symmetric positive-definite matrix to A.

Usage

1

Arguments

A

square numeric matrix.

Details

"The nearest symmetric positive semidefinite matrix in the Frobenius norm to an arbitrary real matrix A is shown to be (B + H)/2, where H is the symmetric polar factor of B=(A + A')/2."
N. J. Highham

Value

Returns a matrix of the same size.

References

Nicholas J. Higham (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications. Vol. 103, pp.103-118.

See Also

randortho, procrustes

Examples

1
2
3
4
5
6
7
8
A <- matrix(1:9, 3, 3)
B <- nearest_spd(A); B
#          [,1]     [,2]     [,3]
# [1,] 2.034900 3.202344 4.369788
# [2,] 3.202344 5.039562 6.876781
# [3,] 4.369788 6.876781 9.383774
norm(B - A, type = 'F')
# [1] 3.758517

Example output

         [,1]     [,2]     [,3]
[1,] 2.034900 3.202344 4.369788
[2,] 3.202344 5.039562 6.876781
[3,] 4.369788 6.876781 9.383774
[1] 3.758517

pracma documentation built on Dec. 11, 2021, 9:57 a.m.