Nothing
#' Reformat input data for performance evaluation calculation
#'
#' The \code{mmdata} function takes predicted scores and labels
#' and returns an \code{mdat} object. The \code{\link{evalmod}} function
#' takes an \code{mdat} object as input data to calculate evaluation measures.
#'
#' @param scores A numeric dataset of predicted scores. It can be a vector,
#' a matrix, an array, a data frame, or a list. The \code{\link{join_scores}}
#' function can be useful to make scores with multiple datasets.
#'
#' @param labels A numeric, character, logical, or factor dataset
#' of observed labels. It can be a vector, a matrix, an array,
#' a data frame, or a list. The \code{\link{join_labels}}
#' function can be useful to make labels with multiple datasets.
#'
#' @param modnames A character vector for the names of the models.
#' The \code{evalmod} function automatically generates default names
#' as "m1", "m2", "m3", and so on when it is \code{NULL}.
#'
#' @param dsids A numeric vector for test dataset IDs.
#' The \code{evalmod} function automatically generates the default ID
#' as \code{1} when it is \code{NULL}.
#'
#' @param posclass A scalar value to specify the label of positives
#' in \code{labels}. It must be the same data type as \code{labels}.
#' For example, \code{posclass = -1} changes the positive label
#' from \code{1} to \code{-1} when \code{labels} contains
#' \code{1} and \code{-1}. The positive label will be automatically
#' detected when \code{posclass} is \code{NULL}.
#'
#' @param na_worst A Boolean value for controlling the treatment of NAs
#' in \code{scores}.
#' \describe{
#' \item{TRUE}{All NAs are treated as the worst scores}
#' \item{FALSE}{All NAs are treated as the best scores}
#' }
#'
#' @param ties_method A string for controlling ties in \code{scores}.
#' \describe{
#' \item{"equiv"}{Ties are equivalently ranked}
#' \item{"first"}{Ties are ranked in an increasing order as appeared}
#' \item{"random"}{ Ties are ranked in random order}
#' }
#'
#' @param expd_first A string to indicate which of the two variables
#' - model names or test dataset IDs
#' should be expanded first when they are automatically generated.
#'
#' \describe{
#' \item{"modnames"}{Model names are expanded first. For example,
#' The \code{mmdata} function generates \code{modnames} as
#' \code{c("m1", "m2")} and \code{dsids} as \code{c(1, 1)}
#' when two vectors are passed as input,
#' and \code{modnames} and \code{dsids} are unspecified.}
#' \item{"dsids"}{Test dataset IDs are expanded first. For example,
#' The \code{mmdata} function generates \code{modnames} as
#' \code{c("m1", "m1")} and \code{dsids} as \code{c(1, 2)}
#' when two vectors are passed as input,
#' and \code{modnames} and \code{dsids} are unspecified.}
#' }
#'
#' @param mode A string that specifies the types of evaluation measures
#' that the \code{evalmod} function calculates.
#' \describe{
#' \item{"rocprc"}{ROC and Precision-Recall curves}
#' \item{"prcroc"}{Same as above}
#' \item{"basic"}{Normalized ranks vs. accuracy, error rate, specificity,
#' sensitivity, precision, Matthews correlation coefficient,
#' and F-score. }
#' \item{"aucroc"}{Fast AUC(ROC) calculation with the U statistic}
#' }
#'
#' @param nfold_df A data frame that contains at least one score column,
#' label and fold columns.
#'
#' @param score_cols A character/numeric vector that specifies score columns
#' of \code{nfold_df}.
#'
#' @param lab_col A number/string that specifies the label column
#' of \code{nfold_df}.
#'
#' @param fold_col A number/string that specifies the fold column
#' of \code{nfold_df}.
#'
#' @param ... Not used by this method.
#'
#' @return The \code{mmdata} function returns an \code{mdat} object
#' that contains formatted labels and score ranks. The object can
#' be used as input data for the \code{\link{evalmod}} function.
#'
#' @seealso \code{\link{evalmod}} for calculation evaluation measures.
#' \code{\link{join_scores}} and \code{\link{join_labels}} for formatting
#' scores and labels with multiple datasets.
#' \code{\link{format_nfold}} for creating n-fold cross validation dataset
#' from data frame.
#'
#' @examples
#'
#' ##################################################
#' ### Single model & single test dataset
#' ###
#'
#' ## Load a dataset with 10 positives and 10 negatives
#' data(P10N10)
#'
#' ## Generate mdat object
#' ssmdat1 <- mmdata(P10N10$scores, P10N10$labels)
#' ssmdat1
#' ssmdat2 <- mmdata(1:8, sample(c(0, 1), 8, replace = TRUE))
#' ssmdat2
#'
#'
#' ##################################################
#' ### Multiple models & single test dataset
#' ###
#'
#' ## Create sample datasets with 100 positives and 100 negatives
#' samps <- create_sim_samples(1, 100, 100, "all")
#'
#' ## Multiple models & single test dataset
#' msmdat1 <- mmdata(samps[["scores"]], samps[["labels"]],
#' modnames = samps[["modnames"]]
#' )
#' msmdat1
#'
#' ## Use join_scores and join_labels
#' s1 <- c(1, 2, 3, 4)
#' s2 <- c(5, 6, 7, 8)
#' scores <- join_scores(s1, s2)
#'
#' l1 <- c(1, 0, 1, 1)
#' l2 <- c(1, 0, 1, 1)
#' labels <- join_labels(l1, l2)
#'
#' msmdat2 <- mmdata(scores, labels, modnames = c("ms1", "ms2"))
#' msmdat2
#'
#'
#' ##################################################
#' ### Single model & multiple test datasets
#' ###
#'
#' ## Create sample datasets with 100 positives and 100 negatives
#' samps <- create_sim_samples(10, 100, 100, "good_er")
#'
#' ## Single model & multiple test datasets
#' smmdat <- mmdata(samps[["scores"]], samps[["labels"]],
#' modnames = samps[["modnames"]],
#' dsids = samps[["dsids"]]
#' )
#' smmdat
#'
#'
#' ##################################################
#' ### Multiple models & multiple test datasets
#' ###
#'
#' ## Create sample datasets with 100 positives and 100 negatives
#' samps <- create_sim_samples(10, 100, 100, "all")
#'
#' ## Multiple models & multiple test datasets
#' mmmdat <- mmdata(samps[["scores"]], samps[["labels"]],
#' modnames = samps[["modnames"]],
#' dsids = samps[["dsids"]]
#' )
#' mmmdat
#'
#'
#' ##################################################
#' ### N-fold cross validation datasets
#' ###
#'
#' ## Load test data
#' data(M2N50F5)
#' head(M2N50F5)
#'
#' ## Speficy nessesary columns to create mdat
#' cvdat1 <- mmdata(
#' nfold_df = M2N50F5, score_cols = c(1, 2),
#' lab_col = 3, fold_col = 4,
#' modnames = c("m1", "m2"), dsids = 1:5
#' )
#' cvdat1
#'
#' ## Use column names
#' cvdat2 <- mmdata(
#' nfold_df = M2N50F5, score_cols = c("score1", "score2"),
#' lab_col = "label", fold_col = "fold",
#' modnames = c("m1", "m2"), dsids = 1:5
#' )
#' cvdat2
#'
#' @export
mmdata <- function(scores, labels, modnames = NULL, dsids = NULL,
posclass = NULL, na_worst = TRUE, ties_method = "equiv",
expd_first = NULL, mode = "rocprc",
nfold_df = NULL, score_cols = NULL, lab_col = NULL,
fold_col = NULL, ...) {
# === Join datasets ===
if (!is.null(nfold_df) && !is.null(score_cols) && !is.null(lab_col) &&
!is.null(fold_col)) {
nfold_list <- format_nfold(nfold_df, score_cols, lab_col, fold_col)
lscores <- nfold_list$scores
llabels <- nfold_list$labels
if (is.null(expd_first)) {
expd_first <- "dsids"
}
} else {
if (missing(scores) || missing(labels)) {
stop("'scores' and/or 'lables' are missing", call. = FALSE)
}
lscores <- join_scores(scores, chklen = FALSE)
llabels <- join_labels(labels, chklen = FALSE)
if (is.null(expd_first)) {
expd_first <- "modnames"
}
}
# === Model names and dataset IDs ===
new_expd_first <- .pmatch_expd_first(expd_first)
mnames <- .create_modnames(length(lscores), modnames, dsids, new_expd_first)
new_modnames <- mnames[["mn"]]
new_dsids <- mnames[["ds"]]
data_info <- data.frame(
modnames = new_modnames, dsids = new_dsids,
nn = rep(NA, length(new_modnames)),
np = rep(NA, length(new_modnames)),
stringsAsFactors = FALSE
)
# === Validate arguments and variables ===
new_mode <- .pmatch_mode(mode)
new_ties_method <- .pmatch_tiesmethod(ties_method, ...)
new_na_worst <- .get_new_naworst(na_worst, ...)
.validate_mmdata_args(lscores, llabels, new_modnames, new_dsids,
posclass = posclass,
na_worst = new_na_worst, ties_method = new_ties_method,
expd_first = new_expd_first, mode = new_mode
)
# Replicate labels
if (length(lscores) != 1 && length(llabels) == 1) {
llabels <- replicate(length(lscores), llabels[[1]], simplify = FALSE)
}
# === Reformat input data ===
func_fmdat <- function(i) {
reformat_data(lscores[[i]], llabels[[i]],
posclass = posclass,
na_worst = new_na_worst, ties_method = new_ties_method,
modname = new_modnames[i], dsid = new_dsids[i],
mode = new_mode, ...
)
}
mmdat <- lapply(seq_along(lscores), func_fmdat)
for (i in seq_along(mmdat)) {
data_info[["nn"]][i] <- attr(mmdat[[i]], "nn")
data_info[["np"]][i] <- attr(mmdat[[i]], "np")
}
# === Create an S3 object ===
s3obj <- structure(mmdat, class = "mdat")
# Set attributes
attr(s3obj, "data_info") <- data_info
attr(s3obj, "uniq_modnames") <- unique(new_modnames)
attr(s3obj, "uniq_dsids") <- unique(new_dsids)
attr(s3obj, "args") <- list(
posclass = posclass,
na_worst = new_na_worst,
ties_method = new_ties_method,
expd_first = new_expd_first,
mode = new_mode
)
attr(s3obj, "validated") <- FALSE
# Call .validate.mdat()
.validate(s3obj)
}
#
# Check partial match - expd_first
#
.pmatch_expd_first <- function(val) {
if (assertthat::is.string(val)) {
if (val == "dsids" || val == "modnames") {
return(val)
}
if (!is.na(pmatch(val, "dsids"))) {
return("dsids")
}
if (!is.na(pmatch(val, "modnames"))) {
return("modnames")
}
}
val
}
#
# Check partial match - ties method
#
.pmatch_tiesmethod <- function(val, ...) {
arglist <- list(...)
if (!is.null(arglist[["ties.method"]])) {
val <- arglist[["ties.method"]]
}
if (assertthat::is.string(val)) {
choices <- c("equiv", "random", "first")
if (val %in% choices) {
return(val)
}
if (!is.na(pmatch(val, "equiv"))) {
return("equiv")
}
if (!is.na(pmatch(val, "random"))) {
return("random")
}
if (!is.na(pmatch(val, "first"))) {
return("first")
}
}
val
}
#
# Get na worst value
#
.get_new_naworst <- function(val, ...) {
set_na_last <- FALSE
arglist <- list(...)
if (!is.null(arglist[["na.last"]])) {
val <- arglist[["na.last"]]
set_na_last <- TRUE
}
assertthat::is.flag(val)
if (set_na_last) {
val <- !val
}
val
}
#
# Get model names and dataset IDs
#
.create_modnames <- function(dlen, modnames, dsids,
expd_first = "dsids") {
len_mn <- length(modnames)
len_ds <- length(dsids)
is_null_mn <- is.null(modnames)
is_null_ds <- is.null(dsids)
ds_mn <- list(mn = modnames, ds = dsids)
# === Reformat model names and dataset IDs ===
# No reformat
if (len_mn == dlen && len_ds == dlen) {
return(ds_mn)
}
# Assign a single dataset ID
if (len_mn == dlen && is_null_ds) {
ds_mn[["ds"]] <- rep(1, dlen)
return(ds_mn)
}
# Assign a single model name
if (is_null_mn && len_ds == dlen) {
ds_mn[["mn"]] <- rep("m1", dlen)
return(ds_mn)
}
# Expand both model names and dataset IDs
if (len_mn * len_ds == dlen) {
if (expd_first == "modnames") {
ds_mn[["mn"]] <- rep(modnames, len_ds)
ds_mn[["ds"]] <- rep(dsids, each = len_mn)
} else if (expd_first == "dsids") {
ds_mn[["mn"]] <- rep(modnames, each = len_ds)
ds_mn[["ds"]] <- rep(dsids, len_mn)
}
return(ds_mn)
}
# Expand model names and assign a single dataset ID
if (is_null_mn && is_null_ds) {
if (expd_first == "modnames") {
ds_mn[["mn"]] <- paste0("m", seq(dlen))
ds_mn[["ds"]] <- rep(1, dlen)
} else if (expd_first == "dsids") {
ds_mn[["mn"]] <- rep("m1", dlen)
ds_mn[["ds"]] <- seq(dlen)
}
return(ds_mn)
}
# === Error handling ===
stop("Invalid modnames and/or dsids", call. = FALSE)
}
#
# Validate arguments of mmdata()
#
.validate_mmdata_args <- function(lscores, llabels, modnames, dsids, posclass,
na_worst, ties_method, expd_first, mode) {
# Check lscores and llabels
if (length(llabels) != 1 && length(lscores) != length(llabels)) {
stop(paste0(
"scores and labels must be the same lengths",
", or the length of labels must be 1"
), call. = FALSE)
}
# Check model names
.validate_modnames(modnames, length(lscores))
# Check dataset IDs
.validate_dsids(dsids, length(lscores))
# Check posclass
.validate_posclass(posclass)
# Check na_worst
.validate_na_worst(na_worst)
# Check ties_method
.validate_ties_method(ties_method)
# Check expd_first
.validate_expd_first(expd_first)
# Check mode
.validate_mode(mode)
# Chekc the length of modnames and dsids
if (length(modnames) != length(dsids)) {
stop("modnames and dsids must be the same lengths", call. = FALSE)
}
}
#
# Validate 'mdat' object generated by mmdata()
#
.validate.mdat <- function(x) {
# Need to validate only once
if (methods::is(x, "mdat") && attr(x, "validated")) {
return(x)
}
# Check mdat
if (!methods::is(x, "mdat")) {
stop("mdat created by mmdata() expected", call. = FALSE)
}
# Validate class items and attributes
item_names <- NULL
attr_names <- c(
"data_info", "uniq_modnames", "uniq_dsids", "args",
"validated"
)
arg_names <- c("posclass", "na_worst", "ties_method", "expd_first", "mode")
.validate_basic(
x, "mdat", "mmdata", item_names, attr_names,
arg_names
)
# Check values of class items
if (length(x) != nrow(attr(x, "data_info"))) {
stop("Invalid modnames and dsids", call. = FALSE)
}
# Chekc data consistency among the same dsids
dsid_nn <- list()
dsid_np <- list()
for (i in seq_along(x)) {
# Check nn and np for the same dsids
nn <- attr(x[[i]], "nn")
np <- attr(x[[i]], "np")
dsid_chr <- as.character(attr(x[[i]], "dsid"))
if (is.null(dsid_nn[[dsid_chr]])) {
dsid_nn[[dsid_chr]] <- nn
dsid_np[[dsid_chr]] <- np
} else if (dsid_nn[[dsid_chr]] != nn || dsid_np[[dsid_chr]] != np) {
stop(paste0("Inconsistent labels for dsid: ", dsid_chr), call. = FALSE)
}
}
attr(x, "validated") <- TRUE
x
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.