R/biovars.R

Defines functions .cv

# Author: Robert Hijmans
# November 2009
# License GPL3
#
# based on:
# MkBCvars.AML 
# Author Robert Hijmans
# January 2006  
# Museum of Vertebrate Zoology, UC Berkeley
#
# Version 2.3
#
# function to create19 BIOCLIM variables from 
# monthly T-min, T-max, and Precipitation data
#
# BIO1 = Annual Mean Temperature
# BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
# BIO3 = Isothermality (P2/P7) (* 100)
# BIO4 = Temperature Seasonality (standard deviation *100)
# BIO5 = Max Temperature of Warmest Month
# BIO6 = Min Temperature of Coldest Month
# BIO7 = Temperature Annual Range (P5-P6)
# BIO8 = Mean Temperature of Wettest Quarter
# BIO9 = Mean Temperature of Driest Quarter
# BIO10 = Mean Temperature of Warmest Quarter
# BIO11 = Mean Temperature of Coldest Quarter
# BIO12 = Annual Precipitation
# BIO13 = Precipitation of Wettest Month
# BIO14 = Precipitation of Driest Month
# BIO15 = Precipitation Seasonality (Coefficient of Variation)
# BIO16 = Precipitation of Wettest Quarter
# BIO17 = Precipitation of Driest Quarter
# BIO18 = Precipitation of Warmest Quarter
# BIO19 = Precipitation of Coldest Quarter
# 
# These summary Bioclimatic variables are after:
#   Nix, 1986. A biogeographic analysis of Australian elapid snakes. In: R. Longmore (ed.).
#      Atlas of elapid snakes of Australia. Australian Flora and Fauna Series 7.
#      Australian Government Publishing Service, Canberra.
#
# and Expanded following the ANUCLIM manual
# 

.cv <- function(x) {
#  R function to compute the coefficient of variation (expressed as a percentage)
# if there is only a single value, stats::sd = NA. However, one could argue that cv =0. 
# and NA may break the code that receives it.
#The function returns NA if(aszero=FALSE)   else a value of 0 is returned.
	# abs to avoid very small (or zero) mean with e.g. -5:5
	m <- mean(abs(x), na.rm=TRUE)  
	if (!is.na(m) && (m == 0)) {
		return(0)
	} else {
		return(100 * stats::sd(x) / m)
	}
}


if (!isGeneric("bcvars")) {
	setGeneric("bcvars", function(prec, tmin, tmax, ...)
		standardGeneric("bcvars"))
}	


setMethod("bcvars", signature(prec="numeric", tmin="numeric", tmax="numeric"), 
	function(prec, tmin, tmax) {
		bcvars(t(as.matrix(prec)), t(as.matrix(tmin)), t(as.matrix(tmax)))
	}
)


setMethod("bcvars", signature(prec="SpatRaster", tmin="SpatRaster", tmax="SpatRaster"), 
	function(prec, tmin, tmax, filename="", ...) {

	if (nlyr(prec) != 12) stop("nlyr(prec) is not 12")
	if (nlyr(tmin) != 12) stop("nlyr(tmin) is not 12")
	if (nlyr(tmax) != 12) stop("nlyr(tmax) is not 12")
	
	
	x <- c(prec, tmin, tmax)
	readStart(x)
	on.exit(readStop(x))
	nc <- ncol(x)
	out <- rast(prec, nlyr=19)
	names(out) <- paste0("bio", 1:19)
	b <- writeStart(out, filename, ...)
	for (i in 1:b$n) {
		d <- readValues(x, b$row[i], b$nrows[i], 1, nc, TRUE, FALSE)
		p <- bcvars(d[,1:12], d[,13:24], d[,25:36])
		writeValues(out, p, b$row[i], b$nrows[i])
	}
	writeStop(out)
	return(out)
}
)




setMethod("bcvars", signature(prec="matrix", tmin="matrix", tmax="matrix"), 
	function(prec, tmin, tmax) {

		if (nrow(prec) != nrow(tmin) | nrow(tmin) != nrow(tmax) ) {
			stop("prec, tmin and tmax should have same length")
		}
		
		if (ncol(prec) != ncol(tmin) | ncol(tmin) != ncol(tmax) ) {
			stop("prec, tmin and tmax should have same number of variables (columns)")
		}
		
		# can"t have missing values in a row
		nas <- apply(prec, 1, function(x){ any(is.na(x)) } )
		nas <- nas | apply(tmin, 1, function(x){ any(is.na(x)) } )
		nas <- nas | apply(tmax, 1, function(x){ any(is.na(x)) } )
		p <- matrix(nrow=nrow(prec), ncol=19)
		colnames(p) = paste("bio", 1:19, sep="")
		if (all(nas)) { return(p) }
		
		prec[nas,] <- NA
		tmin[nas,] <- NA
		tmax[nas,] <- NA
		
		window <- function(x)  { 
			lng <- length(x)
			x <- c(x,  x[1:3])
			m <- matrix(ncol=3, nrow=lng)
			for (i in 1:3) { m[,i] <- x[i:(lng+i-1)] }
			apply(m, MARGIN=1, FUN=sum)
		}
		
		tavg <- (tmin + tmax) / 2
		
# P1. Annual Mean Temperature 
		p[,1] <- apply(tavg,1,mean)
# P2. Mean Diurnal Range(Mean(period max-min)) 
		p[,2] <- apply(tmax-tmin, 1, mean)
# P4. Temperature Seasonality (standard deviation) 
		p[,4] <- 100 * apply(tavg, 1, stats::sd)
# P5. Max Temperature of Warmest Period 
		p[,5] <- apply(tmax,1, max)
# P6. Min Temperature of Coldest Period 
		p[,6] <- apply(tmin, 1, min)
# P7. Temperature Annual Range (P5-P6) 
		p[,7] <- p[,5] - p[,6]
# P3. Isothermality (P2 / P7) 
		p[,3] <- 100 * p[,2] / p[,7]
# P12. Annual Precipitation 
		p[,12] <- apply(prec, 1, sum)
# P13. Precipitation of Wettest Period 
		p[,13] <-  apply(prec, 1, max)
# P14. Precipitation of Driest Period 
		p[,14] <-  apply(prec, 1, min)
# P15. Precipitation Seasonality(Coefficient of Variation) 
# the "1 +" is to avoid strange CVs for areas where mean rainfaill is < 1)
		p[,15] <- apply(prec+1, 1, .cv)
		
# precip by quarter (3 months)		
		wet <- t(apply(prec, 1, window))
# P16. Precipitation of Wettest Quarter 
		p[,16] <- apply(wet, 1, max)
# P17. Precipitation of Driest Quarter 
		p[,17] <- apply(wet, 1, min)
		tmp <- t(apply(tavg, 1, window)) / 3
		
		if (all(is.na(wet))) {
			p[,8] <- NA		
			p[,9] <- NA		
		} else {
# P8. Mean Temperature of Wettest Quarter 
			wetqrt <- cbind(1:nrow(p), as.integer(apply(wet, 1, which.max)))
			p[,8] <- tmp[wetqrt]
# P9. Mean Temperature of Driest Quarter 
			dryqrt <- cbind(1:nrow(p), as.integer(apply(wet, 1, which.min)))
			p[,9] <- tmp[dryqrt]
		}
# P10 Mean Temperature of Warmest Quarter 
		p[,10] <- apply(tmp, 1, max)

# P11 Mean Temperature of Coldest Quarter
		p[,11] <- apply(tmp, 1, min) 

		if (all(is.na(tmp))) {
			p[,18] <- NA		
			p[,19] <- NA
		} else {
# P18. Precipitation of Warmest Quarter 
			hot <- cbind(1:nrow(p), as.integer(apply(tmp, 1, which.max)))
			p[,18] <- wet[hot]
# P19. Precipitation of Coldest Quarter 
			cold <- cbind(1:nrow(p), as.integer(apply(tmp, 1, which.min)))
			p[,19] <- wet[cold]
		}
		
		return(p)	
	}
)

Try the predicts package in your browser

Any scripts or data that you put into this service are public.

predicts documentation built on Oct. 7, 2024, 9:06 a.m.