R/pycno.R

Defines functions pycnophy

Documented in pycnophy

# adapted from from R package pycno
# Chris Brunsdon <christopher.brunsdon at nuim.ie>
# GPL >= 2


# x = SpatRaster
# v = SpatVector 
# pop = field in v, or vector
  
pycnophy <- function(x, v, pop, r=0.2, converge=3, verbose=FALSE) {


		s1d <- function(s) unclass(stats::filter(s, c(0.5,0,0.5)))

		pycno <- function(x, r, zones, uzones, pops) {
			mval <- mean(x)
			pad <- rbind(mval, cbind(mval, x, mval), mval)
			pad <- (t(apply(pad, 1, s1d)) + apply(pad, 2, s1d))/2
			pad <- pad[2:(nrow(x)+1), 2:(ncol(x)+1)]
			x <- x * r + (1-r) * pad
			for (i in uzones) {
				z <- (zones == i)
				x[z] <- pmax(0, x[z] * pops[i]/sum(x[z]))
				x[z] <- x[z] + (pops[i] - sum(x[z]))/sum(z)
			}
			x
		}


	# prep data 
		if (is.character(pop)) {
			stopifnot(pop %in% names(v))
			pop <- v[[pop, drop=TRUE]]
		} else {
			stopifnot(length(pop) == nrow(v))
		}
		pop <- pmax(0, pop)
#		i <- pop > 0
#		i[is.na(i)] <- FALSE
#		if (!all(i)) {
#			if (any(i)) {
#				v <- v[i,]
#				pop <- pop[i]
#			} else {
#				stop("none of the values in 'pop' is larger than zero")
#			}
#		}

	# add zero for NAs
		pops <- c(pop, 0)

	# zones
		x <- rasterize(v, x, 1:nrow(v))
		zones <- t(as.matrix(x, wide=TRUE))
		zones[is.na(zones)] <- max(zones, na.rm=TRUE)+1
		uzs <- sort(unique(as.vector(zones)))
	   
	# pop per cell
		xx <- zones*0
		for (i in uzs) {
			zone.set <- (zones == i)
			xx[zone.set] <- pops[i]/sum(zone.set)
		}

		stopper <- max(xx, na.rm=TRUE) * 10^(-converge)
		repeat {
			old.x <- xx
			xx <- pycno(xx, r, zones, uzs, pops)
			if (verbose) {
				cat(sprintf("Maximum Change: %12.5f - will stop at %12.5f\n", max(abs(old.x - xx)), stopper))
				utils::flush.console()
			}
			if (max(abs(old.x - xx), na.rm=TRUE) < stopper) break 
		}
	y <- setValues(x, as.vector(xx))
	mask(y, x)
} 

Try the predicts package in your browser

Any scripts or data that you put into this service are public.

predicts documentation built on Oct. 7, 2024, 9:06 a.m.