Nothing
#' Adaptative generation of Latin Hypercubes
#'
#' Generates a series of Latin Hypercube Samples for a model until a pair of LHS
#' present a measure of agreement equal to or greater than a specified target.
#' @inheritParams LHS
#' @param target The desired SBMA.
#' @param init The size of the initial LHS generated.
#' @param inc The increment between successive runs. For example, if init = 5 and inc = 20, the first
#' LHS will be generated with size 5, the second with size 25.
#' @param FUN
#' When the model returns more than one response, SBMA values are calculated for each variable.
#' The FUN argument specifies how to combine these SBMA values. The recommended default is to
#' chose the minimum value.
#' @return Returns the largest LHS generated.
#' @export
target.sbma <- function(target, model, factors, q = NULL, q.arg = NULL, res.names=NULL, method=c("HL", "random"),
opts=list(), init=length(factors)+2, inc=100, FUN=min) {
#initial LHS
N = init
method=match.arg(method)
print("INFO: initial run...")
oldL <- LHS(model, factors, N, q, q.arg, res.names, method, opts, nboot=0)
while (TRUE) {
N = N + inc
print(paste("INFO: LHS with N =", N));
newL <- LHS(model, factors, N, q, q.arg, res.names, method, opts, nboot=0)
s <- FUN(sbma(newL, oldL))
print(paste("sbma of ", round(s,3)," (target ",target,")", sep=""))
if (s >= target) return (newL);
oldL <- newL;
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.