Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(DAMisc)
## load data from psre package
data(india)
## Manage india election data
india <- india %>%
## make urban a binary variable
mutate(urban = case_when(
urbrural %in% c(1,2) ~ 1,
urbrural %in% 3:5 ~ 0,
TRUE ~ NA_real_),
## make urban and sbc factors
urban = as.factor(urban),
sbc = as.factor(sbc),
## make bjp a dummy variable indicating
## bjp vote
bjp = case_when(
in_prty == 2 ~ 1,
in_prty %in% c(1,3,4,5) ~ 0,
TRUE ~ NA_real_),
## recode ethnicity into broader categories
eth = case_when(
in_ethn1 %in% 1:4 ~ "Hindu",
in_ethn1 %in% 5:7 ~ "Muslim",
in_ethn1 %in% 8:12 ~ "Other",
TRUE ~ NA_character_),
eth = as.factor(eth),
## make topbot into a three-category variable
tb3 = case_when(
topbot %in% 1:3 ~ "Low",
topbot %in% 4:7 ~ "Middle",
topbot %in% 8:10 ~ "High",
TRUE ~ NA_character_),
tb3 = factor(tb3, levels=c("Low", "Middle", "High")))
## estimate logit model of bjp vote
mod1 <- glm(bjp ~ eth + sbc + educyrs + tb3 + urban +
anti_immigration,
data=india, family=binomial)
## get all the variables that were in
## mod1 from the india dataset and
## listwise delete
d <- get_all_vars(mod1, india) %>% na.omit()
## calculate the education average
## first difference.
g_ed <- glmChange2(mod1, "educyrs", india, diffchange="sd", n=2)
## make a data frame of the education effects
ed_eff <- tibble(
eth = d$eth,
eff = g_ed$avesamp
)
## A. Distribution of first differences of
## education by ethnicity
ggplot(ed_eff, aes(x=eff, fill=eth)) +
geom_histogram(position="identity", alpha=.5) +
theme_classic() +
theme(legend.position=c(.15,.9)) +
scale_fill_manual(values=c("gray75", "gray50", "gray25")) +
labs(x="First Difference of Education", y="Frequency", fill="")
# ggssave("output/f11_3a.png", height=4.5, width=4.5, units="in", dpi=300)
## calculate the linear predictor for
## mod1 and add in ethnicity
eta_dat <- data.frame(
eta = predict(mod1, type="link"),
eth = d$eth
)
## find the ranges of and also
## the 2.5th and 97.5th percentile
## of eta for the different ethnicities
eta_sum <- eta_dat %>%
group_by(eth) %>%
summarise(min = min(eta),
max = max(eta),
low = quantile(eta, .025),
up = quantile(eta, .975))
## B. Distribution of eta by ethnicity
ggplot() +
geom_line(aes(x=seq(-4, 1.5, length=100), y=plogis(seq(-4, 1.5, length=100))), col="black") +
theme_classic() +
theme(legend.position=c(.15,.9)) +
geom_segment(aes(x=eta_sum$min[2], y=0, xend=eta_sum$max[2], yend=0),
size=2) +
geom_segment(aes(x=eta_sum$min[1], y=0, xend=eta_sum$max[1], yend=0),
size=2) +
scale_colour_manual(values=c("black", "gray50")) +
geom_text(aes(x=mean(c(eta_sum$min[2], eta_sum$max[2])),
y=-0.03, label="Muslim")) +
geom_text(aes(x=mean(c(eta_sum$min[1], eta_sum$max[1])),
y=-0.03, label="Hindu")) +
labs(x=expression(eta), y="E(y|b,x1)", colour="", parse=TRUE)
# ggssave("output/f11_3b.png", height=4.5, width=4.5, units="in", dpi=300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.