Nothing
## The psre package must be installed first.
## You can do this with the following code
# install.packages("remotes")
# remotes::install_github('davidaarmstrong/psre')
## load packages
library(tidyverse)
library(psre)
library(DAMisc)
library(gridExtra)
## load data from psre package
data(india)
## Manage india election data
india <- india %>%
## make urban a binary variable
mutate(urban = case_when(
urbrural %in% c(1,2) ~ 1,
urbrural %in% 3:5 ~ 0,
TRUE ~ NA_real_),
## make urban and sbc factors
urban = as.factor(urban),
sbc = as.factor(sbc),
## make bjp a dummy variable indicating
## bjp vote
bjp = case_when(
in_prty == 2 ~ 1,
in_prty %in% c(1,3,4,5) ~ 0,
TRUE ~ NA_real_),
## recode ethnicity into broader categories
eth = case_when(
in_ethn1 %in% 1:4 ~ "Hindu",
in_ethn1 %in% 5:7 ~ "Muslim",
in_ethn1 %in% 8:12 ~ "Other",
TRUE ~ NA_character_),
eth = as.factor(eth),
## make topbot into a three-category variable
tb3 = case_when(
topbot %in% 1:3 ~ "Low",
topbot %in% 4:7 ~ "Middle",
topbot %in% 8:10 ~ "High",
TRUE ~ NA_character_),
tb3 = factor(tb3, levels=c("Low", "Middle", "High")))
## estimate logit model of bjp vote
mod1 <- glm(bjp ~ eth + sbc + educyrs + tb3 + urban +
anti_immigration,
data=india, family=binomial)
## estimate logit model with interaction
## between education and ethnicity
mod1i <- glm(bjp ~ eth*educyrs + sbc + tb3 + urban +
anti_immigration,
data=india, family=binomial)
## get all variables in mod1 from the
## india data and listwise delete.
d <- get_all_vars(mod1, india) %>% na.omit()
## calculate the probabilities of bjp
## vote for all combinations of education
## and ethnicity for both the interaction
## and additive models
pca <- probci(mod1, india, changeX = c("educyrs", "eth"), numQuantVals=21)
names(pca$plot.data) <- c("educyrs", "eth", "pred_prob", "lower", "upper")
pci <- probci(mod1i, india, changeX = c("educyrs", "eth"), numQuantVals=21)
names(pci$plot.data) <- c("educyrs", "eth", "pred_prob", "lower", "upper")
## A. Model 11b (without product term)
## generate the graph of the probability
## of bjp vote for different values of education
## by ethnicity for the additive model.
ie_add <- ggplot(pca$plot.data, aes(x=educyrs, y=pred_prob,
ymin=lower, ymax=upper)) +
geom_ribbon(aes(fill=eth), alpha=.4) +
geom_line(aes(linetype=eth), col="black") +
theme_classic() +
scale_fill_manual(values=c("gray75", "gray50", "gray15")) +
theme(legend.position="bottom") +
ylim(0,.85) +
labs(x= "Years of Education", y="Predicted Pr(Vote BJP)",
linetype="", fill="")
## B. Model 11c (with product term)
## generate the graph of the probability
## of bjp vote for different values of education
## by ethnicity for the interaction model.
ie_int <- ggplot(pci$plot.data, aes(x=educyrs, y=pred_prob,
ymin=lower, ymax=upper)) +
geom_ribbon(aes(fill=eth), alpha=.4) +
geom_line(aes(linetype=eth), col="black") +
theme_classic() +
scale_fill_manual(values=c("gray75", "gray50", "gray15")) +
theme(legend.position="bottom") +
ylim(0,.85) +
labs(x= "Years of Education", y="Predicted Pr(Vote BJP)",
linetype="", fill="")
## calculate the range of education
ft <- range(d$educyrs)
## calculate the densities of education for each different ethnicity
dens1 <- with(filter(d, eth == "Hindu"), density(educyrs, n=100, from=0, to=20, bw=1.5))
dens1$y <- (dens1$y/max(dens1$y))
dens2 <- with(filter(d, eth == "Muslim"), density(educyrs, n=100, from=0, to=20, bw=1.5))
dens2$y <- (dens2$y/max(dens2$y))
dens3 <- with(filter(d, eth == "Other"), density(educyrs, n=100, from=0, to=20, bw=1.5))
dens3$y <- (dens3$y/max(dens3$y))
## put the densities in a data frame
dens.df <- data.frame(
x = c(dens1$x, dens2$x, dens3$x),
y = c(dens1$y, dens2$y, dens3$y),
eth = factor(rep(1:3, each=100), levels=1:3, labels=c("Hindu", "Muslim", "Other"))
)
## Make the marginal density plot
marg_dens <-
ggplot(dens.df, aes(x=x, y=y, linetype=eth, fill=eth)) +
geom_area(position="identity", alpha=.4, show.legend=FALSE) +
geom_line(show.legend=FALSE) +
scale_fill_manual(values=c("gray75", "gray50", "gray15")) +
theme(panel.grid=element_blank(),
panel.background = element_blank(),
axis.text.x = element_blank(),
axis.title.x=element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_text(colour="transparent"),
axis.text.y= element_text(colour="transparent"),
axis.ticks.y = element_line(colour="transparent"))
#png("output/f11_5a.png", height=5.5, width=4.5, units="in", res=300)
grid.arrange(marg_dens, ie_add, ncol=1, heights=c(2,8))
#dev.off()
#png("output/f11_5b.png", height=5.5, width=4.5, units="in", res=300)
grid.arrange(marg_dens, ie_int, ncol=1, heights=c(2,8))
#dev.off()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.