Description Usage Arguments Value Author(s) See Also Examples

In medicine and clinical psychology, diagnoses tend to be categorical (someone is depressed or not, someone has an anxiety disorder or not). Cooccurrence of both of these symptoms is called comorbidity. Diagnostic categories vary in their degree of comorbidity with other diagnostic categories. From the point of view of correlation, comorbidity is just a name applied to one cell in a four fold table. It is thus possible to analyze comorbidity rates by considering the probability of the separate diagnoses and the probability of the joint diagnosis. This gives the two by two table needed for a phi, Yule, or tetrachoric correlation.

1 | ```
comorbidity(d1, d2, com, labels = NULL)
``` |

`d1` |
Proportion of diagnostic category 1 |

`d2` |
Proportion of diganostic category 2 |

`com` |
Proportion of comorbidity (diagnostic category 1 and 2) |

`labels` |
Names of categories 1 and 2 |

`twobytwo ` |
The two by two table implied by the input |

`phi ` |
Phi coefficient of the two by two table |

`Yule` |
Yule coefficient of the two by two table |

`tetra` |
Tetrachoric coefficient of the two by two table |

William Revelle

`phi`

, `phi2tetra`

,`Yule`

, `Yule.inv`

`Yule2phi`

, `tetrachoric`

and `polychoric`

, as well as `AUC`

for graphical displays

1 | ```
comorbidity(.2,.15,.1,c("Anxiety","Depression"))
``` |

```
Call: comorbidity(d1 = 0.2, d2 = 0.15, com = 0.1, labels = c("Anxiety",
"Depression"))
Comorbidity table
Anxiety -Anxiety
Depression 0.1 0.05
-Depression 0.1 0.75
implies phi = 0.49 with Yule = 0.87 and tetrachoric correlation of 0.75
and normal thresholds of 1.04 0.84
```

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.