View source: R/pvEBayes_main_function.R
tuning_efron | R Documentation |
Select hyperparameter (p, c0) and obtain the optimal efron model based on AIC and BIC
tuning_efron(
contin_table,
p_vec = NULL,
c0_vec = NULL,
return_all_fit = FALSE,
return_all_AIC = TRUE,
return_all_BIC = TRUE
)
contin_table |
an IxJ contingency table showing pairwise counts of adverse events for I AEs (along the rows) and J drugs (along the columns). |
p_vec |
vector of hyperparameter p values to be selected. p is a hyperparameter in "efron" model which should be a positive integer. If is NULL, a default set of p values (80, 100, 120, 150, 200) will be used. |
c0_vec |
vector of hyperparameter c0 values to be selected. c0 is a hyperparameter in "efron" model which should be a positive number. If is NULL, a default set of c0 values (0.001, 0.01, 0.1, 0.2, 0.5) will be used. |
a list of fitted models with hyperparameter alpha selected by AIC or BIC.
Akaike H. A new look at the statistical model identification.
IEEE Transactions on Automatic Control.
2003; 19(6):716-23.
Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978; 1:461-4.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.