| sar.eq.bootstrap | R Documentation | 
This function simulates bootstrap samples of selected spline autoregression (SAR) coefficients for testing equality of Granger-causality in two samples based on their SAR models under H0: effect in each sample equals the average effect.
sar.eq.bootstrap(
  y.qser,
  fit,
  fit2,
  index = c(1, 2),
  nsim = 1000,
  method = c("ar", "sar"),
  n.cores = 1,
  mthreads = FALSE,
  seed = 1234567
)
y.qser | 
 matrix or array of QSER from   | 
fit | 
 object of SAR model from   | 
fit2 | 
 object of SAR model for the other sample  | 
index | 
 a pair of component indices for multiple time series 
or a sequence of lags for single time series (default =   | 
nsim | 
 number of bootstrap samples (default = 1000)  | 
method | 
 method of residual calculation:   | 
n.cores | 
 number of cores for parallel computing (default = 1)  | 
mthreads | 
 if   | 
seed | 
 seed for random sampling (default =   | 
array of simulated bootstrap samples of selected SAR coefficients
y11 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y21 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
y12 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y22 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y1.sar <- qspec.sar(cbind(y11,y21),tau0=tau,p=1)
y2.sar <- qspec.sar(cbind(y12,y22),tau0=tau,p=1)
A1.sim <- sar.eq.bootstrap(y1.sar$qser,y1.sar$fit,y2.sar$fit,index=c(1,2),nsim=5)
A2.sim <- sar.eq.bootstrap(y2.sar$qser,y2.sar$fit,y1.sar$fit,index=c(1,2),nsim=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.