sqdft.fit | R Documentation |
This function computes spline quantile discrete Fourier transform (SQDFT) for univariate or multivariate time series through trigonometric spline quantile regression with user-supplied spar.
sqdft.fit(
y,
tau,
spar = 1,
d = 1,
weighted = FALSE,
ztol = 1e-05,
n.cores = 1,
cl = NULL
)
y |
vector or matrix of time series (if matrix, |
tau |
sequence of quantile levels in (0,1) |
spar |
smoothing parameter |
d |
subsampling rate of quantile levels (default = 1) |
weighted |
if |
ztol |
zero tolerance parameter used to determine the effective dimensionality of the fit |
n.cores |
number of cores for parallel computing (default = 1) |
cl |
pre-existing cluster for repeated parallel computing (default = |
A list with the following elements:
coefficients |
matrix of regression coefficients |
qdft |
matrix or array of the spline quantile discrete Fouror BICier transform of |
crit |
criteria for smoothing parameter selection: (AIC,BIC) |
y <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y.sqdft <- sqdft.fit(y,tau,spar=1,d=4)$qdft
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.