sar.gc.test | R Documentation |
This function computes Wald test and confidence band for Granger-causality
using bootstrap samples generated by sar.gc.bootstrap()
based the spline autoregression (SAR) model of quantile series (QSER).
sar.gc.test(A, A.sim, sel.lag = NULL, sel.tau = NULL)
A |
matrix of selected SAR coefficients |
A.sim |
simulated bootstrap samples from |
sel.lag |
indices of time lags for Wald test (default = |
sel.tau |
indices of quantile levels for Wald test (default = |
a list with the following elements:
test |
list of Wald test result containing |
A.u |
matrix of upper limits of 95% confidence band of |
A.l |
matrix of lower limits of 95% confidence band of |
y1 <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
y2 <- stats::arima.sim(list(order=c(1,0,0), ar=-0.5), n=64)
tau <- seq(0.1,0.9,0.05)
y.sar <- qspec.sar(cbind(y1,y2),tau=tau,p=1)
A <- sar.gc.coef(y.sar$fit,index=c(1,2))
A.sim <- sar.gc.bootstrap(y.sar$qser,y.sar$fit,index=c(1,2),nsim=5)
y.gc <- sar.gc.test(A,A.sim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.