tsqr.fit | R Documentation |
This function computes trigonometric spline quantile regression (TSQR) for univariate time series at a single frequency.
tsqr.fit(
y,
f0,
tau,
spar = 1,
d = 1,
weighted = FALSE,
mthreads = TRUE,
prepared = TRUE,
ztol = 1e-05
)
y |
time series |
f0 |
frequency in [0,1) |
tau |
sequence of quantile levels in (0,1) |
spar |
smoothing parameter |
d |
subsampling rate of quantile levels (default = 1) |
weighted |
if |
mthreads |
if |
prepared |
if |
ztol |
zero tolerance parameter used to determine the effective dimensionality of the fit |
object of sqr.fit()
(coefficients in $coef
)
y <- stats::arima.sim(list(order=c(1,0,0), ar=0.5), n=64)
tau <- seq(0.1,0.9,0.05)
fit <- tqr.fit(y,f0=0.1,tau=tau)
fit.sqr <- tsqr.fit(y,f0=0.1,tau=tau,spar=1,d=4)
plot(tau,fit$coef[1,],type='p',xlab='QUANTILE LEVEL',ylab='TQR COEF')
lines(tau,fit.sqr$coef[1,],type='l')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.