Description Usage Arguments Details Value Note Author(s) References See Also Examples
The qkernel Principal Components Analysis is a nonlinear form of principal component analysis.
1 2 3 4 5 6 7 8 9 | ## S4 method for signature 'formula'
qkpca(x, data = NULL, na.action, ...)
## S4 method for signature 'matrix'
qkpca(x, kernel = "rbfbase", qpar = list(sigma = 0.1, q = 0.9),
features = 0, th = 1e-4, na.action = na.omit, ...)
## S4 method for signature 'cndkernmatrix'
qkpca(x, features = 0, th = 1e-4, ...)
## S4 method for signature 'qkernmatrix'
qkpca(x, features = 0, th = 1e-4, ...)
|
x |
the data matrix indexed by row, a formula describing the
model or a kernel matrix of |
data |
an optional data frame containing the variables in the model (when using a formula). |
kernel |
the kernel function used in training and predicting. This parameter can be set to any function, of class kernel, which computes a kernel function value between two vector arguments. qkerntool provides the most popular kernel functions which can be used by setting the kernel parameter to the following strings:
The kernel parameter can also be set to a user defined function of class kernel by passing the function name as an argument. |
qpar |
the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. Valid parameters for existing kernels are :
Hyper-parameters for user defined kernels can be passed through the qpar parameter as well. |
features |
Number of features (principal components) to return. (default: 0 , all) |
th |
the value of the eigenvalue under which principal components are ignored (only valid when features = 0). (default : 0.0001) |
na.action |
A function to specify the action to be taken if |
... |
additional parameters |
Using kernel functions one can efficiently compute
principal components in high-dimensional
feature spaces, related to input space by some non-linear map.
The data can be passed to the qkpca
function in a matrix
, in addition qkpca
also supports input in the form of a
kernel matrix of class qkernmatrix
or class cndkernmatrix
.
An S4 object containing the principal component vectors along with the corresponding eigenvalues.
pcv |
a matrix containing the principal component vectors (column wise) |
eVal |
The corresponding eigenvalues |
rotated |
The original data projected (rotated) on the principal components |
cndkernf |
the kernel function used |
xmatrix |
The original data matrix |
all the slots of the object can be accessed by accessor functions.
The predict function can be used to embed new data on the new space
Yusen Zhang
yusenzhang@126.com
Schoelkopf B., A. Smola, K.-R. Mueller :
Nonlinear component analysis as a kernel eigenvalue problem
Neural Computation 10, 1299-1319
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1366
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # another example using the iris data
data(iris)
test <- sample(1:150,20)
qkpc <- qkpca(~.,data=iris[-test,-5],kernel="rbfbase",
qpar=list(sigma=50,q=0.8),features=2)
# print the principal component vectors
pcv(qkpc)
#plot the data projection on the components
plot(rotated(qkpc),col=as.integer(iris[-test,5]),
xlab="1st Principal Component",ylab="2nd Principal Component")
# embed remaining points
emb <- predict(qkpc,iris[test,-5])
points(emb,col=as.integer(iris[test,5]))
|
[,1] [,2]
[1,] 0.274028336 0.507609993
[2,] 0.293050766 -0.185892003
[3,] 0.278785574 -0.489400451
[4,] 0.234681453 1.120848492
[5,] 0.286639021 -0.114345988
[6,] 0.268163766 0.248799934
[7,] 0.291590277 -0.862926457
[8,] 0.272072858 -0.180640607
[9,] 0.256945088 0.997124902
[10,] 0.266662741 0.006406207
[11,] 0.282772606 -0.347738345
[12,] 0.323802681 -0.684153964
[13,] 0.270279609 1.871927611
[14,] 0.245061354 2.085746020
[15,] 0.268416842 1.286346219
[16,] 0.270504661 0.493767172
[17,] 0.264920319 0.797573889
[18,] 0.237098329 0.566413080
[19,] 0.260449096 0.668349577
[20,] 0.324677916 0.315640369
[21,] 0.236004481 0.106676613
[22,] 0.241201528 -0.123425193
[23,] 0.255625105 -0.254889370
[24,] 0.252630852 0.177708836
[25,] 0.269555185 0.492229112
[26,] 0.263608355 -0.338704040
[27,] 0.246939633 0.623964068
[28,] 0.271046105 1.272218870
[29,] 0.266112860 1.717593558
[30,] 0.268570575 -0.195283854
[31,] 0.291096684 0.153523820
[32,] 0.268243715 0.952085620
[33,] 0.285373629 0.438884203
[34,] 0.300898683 -0.702204960
[35,] 0.264677968 0.348567902
[36,] 0.282302887 0.438513929
[37,] 0.302986641 -0.474754479
[38,] 0.246398563 0.267299779
[39,] 0.227341309 0.617423163
[40,] 0.275777817 -0.377298973
[41,] 0.260039959 0.768491477
[42,] 0.288135697 -0.329127212
[43,] 0.260501833 0.896137619
[44,] 0.275535127 0.177901392
[45,] -0.135468642 1.068307648
[46,] -0.099948065 0.420047738
[47,] -0.154093647 0.800429923
[48,] -0.023459375 -1.488087923
[49,] -0.116499540 0.055823028
[50,] -0.070602312 -0.815270009
[51,] 0.074049056 -1.793097972
[52,] -0.111668954 0.292629028
[53,] -0.002957000 -1.340381721
[54,] 0.048174675 -2.197408269
[55,] -0.031771614 -1.029559722
[56,] -0.105942079 -0.298404692
[57,] 0.014948062 -0.588845334
[58,] -0.099313926 0.670815755
[59,] -0.072339136 -0.707057145
[60,] -0.102441332 -0.942092844
[61,] -0.008634714 -1.114161371
[62,] -0.119126970 -0.213820249
[63,] -0.040806066 -0.256067550
[64,] -0.138417294 -0.564533324
[65,] -0.099439923 -0.402731967
[66,] -0.077748548 0.127278695
[67,] -0.096704017 0.442414051
[68,] -0.141129388 0.366218321
[69,] 0.028475785 -0.773330595
[70,] 0.003067636 -1.310229632
[71,] 0.015847611 -1.275236038
[72,] -0.017855719 -0.673035415
[73,] -0.146634387 -0.714772579
[74,] -0.064834641 -0.927246828
[75,] -0.086828459 0.195771536
[76,] -0.129509460 0.607406010
[77,] -0.088862041 -0.688273098
[78,] -0.029041920 -0.604869811
[79,] -0.021441380 -1.262355897
[80,] -0.052445915 -1.236432880
[81,] -0.096089181 -0.164400136
[82,] 0.069291988 -1.801501029
[83,] -0.037978526 -0.512414539
[84,] -0.042791940 -0.633837191
[85,] -0.070366823 -0.098427471
[86,] -0.034848709 -0.724926348
[87,] -0.258721176 0.185324461
[88,] -0.150206023 -0.946988384
[89,] -0.242285608 0.095514751
[90,] -0.058484344 -2.043518879
[91,] -0.296363237 0.865062618
[92,] -0.239836443 -0.226790632
[93,] -0.293710119 1.535368567
[94,] -0.174338444 0.410108531
[95,] -0.189212434 -0.295295636
[96,] -0.224348031 0.472404895
[97,] -0.167083699 -0.838660116
[98,] -0.198458158 0.263261391
[99,] -0.203273012 0.131875272
[100,] -0.372485922 0.983821449
[101,] -0.138878792 -1.254400488
[102,] -0.249224530 0.787303715
[103,] -0.128066078 -1.027431830
[104,] -0.346665163 1.196810221
[105,] -0.147547280 -0.348468431
[106,] -0.234515386 0.670717348
[107,] -0.266421153 1.104618760
[108,] -0.134208651 -0.332058495
[109,] -0.137300286 -0.235069352
[110,] -0.220648491 -0.221193588
[111,] -0.245089911 0.905596945
[112,] -0.288095501 0.885682582
[113,] -0.319763998 2.521363071
[114,] -0.224122883 -0.221327788
[115,] -0.152943570 -0.258592217
[116,] -0.186672982 -0.774803815
[117,] -0.308915839 1.450223116
[118,] -0.221488132 0.337113608
[119,] -0.198729784 0.130239200
[120,] -0.124871253 -0.330444460
[121,] -0.218418495 0.711756461
[122,] -0.238552639 0.457057273
[123,] -0.200014932 0.750294662
[124,] -0.150206023 -0.946988384
[125,] -0.262169974 0.652553614
[126,] -0.248134027 0.669899096
[127,] -0.202559127 0.394357828
[128,] -0.161718738 -0.590920832
[129,] -0.184934970 0.168659289
[130,] -0.147336415 -0.493355082
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.