Description Objects of class "qkgda" Slots Methods Author(s) See Also Examples
The qkernel Generalized Discriminant Analysis class
Objects can be created by calls of the form new("qkgda", ...).
or by calling the qkgda function.
prj:Object of class "matrix" containing the normalized projections on eigenvectors
eVal:Object of class "matrix" containing the corresponding eigenvalues
eVec:Object of class "matrix" containing the corresponding eigenvectors
label:Object of class "matrix" containing the categorical variables that the categorical data be assigned to one of the categories
signature(object = "qkgda"): returns the normalized projections
signature(object = "qkgda"): returns the eigenvalues
signature(object = "qkgda"): returns the eigenvectors
signature(object = "qkgda"): returns the performed call
signature(object = "qkgda"): returns the used kernel function
signature(object = "qkgda"): embeds new data
signature(object = "qkgda"): returns the used data matrix
Yusen Zhang
yusenzhang@126.com
qkernel-class,
cndkernel-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp = rep(c("1","2","3"), rep(50,3)))
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
test <- as.matrix(iris[testset,-5])
Sp = rep(c("1","2","3"), rep(50,3))
labels <-as.numeric(Sp)
trainlabel <- labels[-testset]
testlabel <- labels[testset]
kgda1 <- qkgda(train, label=trainlabel, kernel = "ratibase", qpar = list(c=1,q=0.9),features = 2)
prj(kgda1)
eVal(kgda1)
eVec(kgda1)
cndkernf(kgda1)
kcall(kgda1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.