Description Objects of class "qkMDS" Slots Methods Author(s) See Also Examples
The qkernel Metric Multi-Dimensional Scaling class
Objects can be created by calls of the form new("qkMDS", ...)
.
or by calling the qkMDS
function.
prj
:Object of class "matrix"
containing the Nxdim matrix (N samples, dim features) with the reduced input data (list of several matrices if more than one dimension specified)
dims
:Object of class "numeric"
containing the
dimension of the target space (default 2)
connum
:Object of class "numeric"
containing the number of connected components in graph
Residuals
:Object of class "vector"
containing the
residual variances for all dimensions
eVal
:Object of class "vector"
containing the corresponding eigenvalues
eVec
:Object of class "vector"
containing the corresponding eigenvectors
signature(object = "qkMDS")
: returns the Nxdim
matrix (N samples, dim features)
signature(object = "qkMDS")
: returns the
dimension
signature(object = "qkMDS")
: returns the
residual variances
signature(object = "qkMDS")
: returns the
eigenvalues
signature(object = "qkMDS")
: returns the
eigenvectors
signature(object = "qkMDS")
: returns the used
data matrix
signature(object = "qkMDS")
: returns the
performed call
signature(object = "qkMDS")
: returns the used
kernel function
Yusen Zhang
yusenzhang@126.com
qkernel-class
,
cndkernel-class
,
qkMDS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # another example using the iris
data(iris)
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
labeltrain<- as.integer(iris[-testset,5])
test <- as.matrix(iris[testset,-5])
# ratibase(c=1,q=0.8)
d_low = qkMDS(train, kernel = "ratibase", qpar = list(c=1,q=0.8),
dims=2, plotResiduals = TRUE)
#plot the data projection on the components
plot(prj(d_low),col=labeltrain, xlab="1st Principal Component",ylab="2nd Principal Component")
prj(d_low)
dims(d_low)
Residuals(d_low)
eVal(d_low)
eVec(d_low)
kcall(d_low)
cndkernf(d_low)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.