pcrboot: Bootstrapping and jackknifing qPCR data

Description Usage Arguments Details Value Author(s) References Examples

Description

Confidence intervals for the estimated parameters and goodness-of-fit measures are calculated for a nonlinear qPCR data fit by either
a) boostrapping the residuals of the fit or
b) jackknifing and refitting the data.

Confidence intervals can also be calculated for all parameters obtained from the efficiency analysis.

Usage

1
2
pcrboot(object, type = c("boot", "jack"), B = 100, njack = 1,
        plot = TRUE, do.eff = TRUE, conf = 0.95, verbose = TRUE, ...)

Arguments

object

an object of class 'pcrfit'.

type

either bootstrapping or jackknifing.

B

numeric. The number of iterations.

njack

numeric. In case of type = "jack", how many datapoints to exclude. Defaults to leave-one-out.

plot

should the fitting and final results be displayed as a plot?

do.eff

logical. If TRUE, efficiency analysis will be performed.

conf

the confidence level.

verbose

logical. If TRUE, the iterations will be printed on the console.

...

other parameters to be passed on to the plotting functions.

Details

Non-parametric bootstrapping is applied using the centered residuals.
1) Obtain the residuals from the fit:

\hat{\varepsilon}_t = y_t - f(x_t, \hat{θ})

2) Draw bootstrap pseudodata:

y_{t}^{\ast} = f(x_t, \hat{θ}) + ε_{t}^{\ast}

where ε_{t}^{\ast} are i.i.d. from distribution \hat{F}, where the residuals from the original fit are centered at zero.
3) Fit \hatθ^\ast by nonlinear least-squares.
4) Repeat B times, yielding bootstrap replications

\hatθ^{\ast 1}, \hatθ^{\ast 2}, …, \hatθ^{\ast B}

One can then characterize the EDF and calculate confidence intervals for each parameter:

θ \in [EDF^{-1}(α/2), EDF^{-1}(1-α/2)]

The jackknife alternative is to perform the bootstrap on the data-predictor vector, i.e. eliminating a certain number of datapoints.
If the residuals are correlated or have non-constant variance the latter is recommended. This may be the case in qPCR data, as the variance in the low fluorescence region (ground phase) is usually much higher than in the rest of the curve.

Value

A list containing the following items:

ITER

a list containing each of the results from the iterations.

CONF

a list containing the confidence intervals for each item in ITER.

Each item contains subitems for the coefficients (coef), root-mean-squared error (rmse), residual sum-of-squares (rss), goodness-of-fit measures (gof) and the efficiency analysis (eff). If plot = TRUE, all data is plotted as boxplots including confidence intervals.

Author(s)

Andrej-Nikolai Spiess

References

Nonlinear regression analysis and its applications.
Bates DM & Watts DG.
Wiley, Chichester, UK, 1988.

Nonlinear regression.
Seber GAF & Wild CJ.
Wiley, New York, 1989.

Boostrap accuracy for non-linear regression models.
Roy T.
J Chemometics (1994), 8: 37-44.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## Simple bootstrapping with
## too less iterations...
par(ask = FALSE)
m1 <- pcrfit(reps, 1, 2, l4)
pcrboot(m1, B = 20)

## Jackknifing with leaving
## 5 datapoints out.
m2 <- pcrfit(reps, 1, 2, l4)
pcrboot(m2, type = "jack", njack = 5, B = 20)

Example output

Loading required package: MASS
Loading required package: minpack.lm
Loading required package: rgl
Loading required package: robustbase
Loading required package: Matrix
Warning messages:
1: In rgl.init(initValue, onlyNULL) : RGL: unable to open X11 display
2: 'rgl_init' failed, running with rgl.useNULL = TRUE 
3: .onUnload failed in unloadNamespace() for 'rgl', details:
  call: fun(...)
  error: object 'rgl_quit' not found 
.........10.........20

fitting converged in 100% of iterations.

$ITER
$ITER$coef
              b          c        d        e
 [1,] -12.21118 0.09686212 11.33265 17.55819
 [2,] -12.07278 0.07016143 11.31772 17.61487
 [3,] -11.81028 0.03597171 11.33150 17.53671
 [4,] -11.97491 0.05733131 11.31543 17.61115
 [5,] -11.83458 0.08998748 11.30267 17.57865
 [6,] -11.76470 0.07215907 11.34185 17.63384
 [7,] -12.02630 0.03820658 11.32024 17.56343
 [8,] -12.16614 0.08235887 11.33595 17.57804
 [9,] -12.01651 0.06370201 11.34809 17.62744
[10,] -11.90387 0.06401986 11.31160 17.59889
[11,] -12.01525 0.07762558 11.32354 17.57681
[12,] -12.05149 0.09601110 11.32681 17.63113
[13,] -12.09255 0.05652215 11.32326 17.60491
[14,] -12.33257 0.03743030 11.30060 17.53166
[15,] -12.02775 0.07860079 11.34630 17.61969
[16,] -12.34194 0.06200407 11.32437 17.58958
[17,] -12.33862 0.02339232 11.29593 17.57953
[18,] -12.41745 0.07225319 11.32995 17.62079
[19,] -12.12952 0.08079887 11.32357 17.61310
[20,] -12.43329 0.07113203 11.30092 17.54731

$ITER$rmse
 [1] 0.07920127 0.08121134 0.07748896 0.08615544 0.08283411 0.08588817
 [7] 0.08066167 0.08314796 0.07672933 0.07404001 0.08109171 0.08366045
[13] 0.09358520 0.07718795 0.09334495 0.08065552 0.08228887 0.08582896
[19] 0.08984434 0.08746631

$ITER$rss
 [1] 0.2822778 0.2967877 0.2702042 0.3340242 0.3087671 0.3319550 0.2927838
 [8] 0.3111112 0.2649325 0.2466865 0.2959140 0.3149582 0.3941185 0.2681091
[15] 0.3920976 0.2927391 0.3047156 0.3314974 0.3632402 0.3442660

$ITER$gof
            Rsq    Rsq.ad        AIC       AICc        BIC      resVar
 [1,] 0.9997701 0.9997548 -103.62153 -102.71244  -94.16243 0.006272841
 [2,] 0.9997587 0.9997426 -101.16540 -100.25631  -91.70630 0.006595281
 [3,] 0.9997811 0.9997665 -105.76350 -104.85441  -96.30440 0.006004538
 [4,] 0.9997286 0.9997105  -95.37376  -94.46467  -85.91466 0.007422761
 [5,] 0.9997465 0.9997296  -99.22646  -98.31737  -89.76736 0.006861490
 [6,] 0.9997303 0.9997123  -95.67825  -94.76916  -86.21915 0.007376778
 [7,] 0.9997630 0.9997472 -101.83095 -100.92185  -92.37184 0.006506306
 [8,] 0.9997474 0.9997306  -98.85585  -97.94676  -89.39675 0.006913583
 [9,] 0.9997859 0.9997717 -106.72894 -105.81985  -97.26984 0.005887390
[10,] 0.9997990 0.9997856 -110.22542 -109.31633 -100.76632 0.005481923
[11,] 0.9997590 0.9997429 -101.30986 -100.40077  -91.85076 0.006575866
[12,] 0.9997432 0.9997261  -98.25368  -97.34459  -88.79458 0.006999070
[13,] 0.9996807 0.9996594  -87.26730  -86.35821  -77.80819 0.008758189
[14,] 0.9997829 0.9997684 -106.14492 -105.23583  -96.68582 0.005957980
[15,] 0.9996823 0.9996611  -87.51920  -86.61011  -78.06009 0.008713280
[16,] 0.9997632 0.9997475 -101.83842 -100.92933  -92.37932 0.006505313
[17,] 0.9997539 0.9997375  -99.87366  -98.96457  -90.41456 0.006771458
[18,] 0.9997321 0.9997142  -95.74584  -94.83675  -86.28674 0.007366610
[19,] 0.9997046 0.9996850  -91.26507  -90.35598  -81.80597 0.008072005
[20,] 0.9997200 0.9997013  -93.89391  -92.98482  -84.43481 0.007650355
            RMSE
 [1,] 0.07589975
 [2,] 0.07782603
 [3,] 0.07425882
 [4,] 0.08256404
 [5,] 0.07938116
 [6,] 0.08230791
 [7,] 0.07729928
 [8,] 0.07968192
 [9,] 0.07353085
[10,] 0.07095364
[11,] 0.07771139
[12,] 0.08017305
[13,] 0.08968408
[14,] 0.07397036
[15,] 0.08945386
[16,] 0.07729338
[17,] 0.07885864
[18,] 0.08225116
[19,] 0.08609916
[20,] 0.08382026

$ITER$eff
           eff  cpD1  cpD2 cpE cpR cpT Cy0 cpCQ cpMR     fluo      init1
 [1,] 1.951465 17.32 15.43  NA  NA  NA  NA   NA   NA 2.019437 0.09686212
 [2,] 1.959912 17.37 15.45  NA  NA  NA  NA   NA   NA 1.986170 0.07016143
 [3,] 1.974724 17.29 15.33  NA  NA  NA  NA   NA   NA 1.951952 0.03597171
 [4,] 1.962987 17.37 15.43  NA  NA  NA  NA   NA   NA 1.974902 0.05733131
 [5,] 1.921363 17.33 15.38  NA  NA  NA  NA   NA   NA 2.002992 0.08998748
 [6,] 1.927840 17.38 15.41  NA  NA  NA  NA   NA   NA 1.987541 0.07215907
 [7,] 1.990264 17.32 15.40  NA  NA  NA  NA   NA   NA 1.963729 0.03820658
 [8,] 1.959224 17.34 15.44  NA  NA  NA  NA   NA   NA 2.007911 0.08235887
 [9,] 1.960054 17.38 15.45  NA  NA  NA  NA   NA   NA 1.984079 0.06370201
[10,] 1.950148 17.35 15.41  NA  NA  NA  NA   NA   NA 1.983360 0.06401986
[11,] 1.949860 17.33 15.41  NA  NA  NA  NA   NA   NA 1.997155 0.07762558
[12,] 1.931297 17.39 15.47  NA  NA  NA  NA   NA   NA 2.020715 0.09601110
[13,] 1.974865 17.37 15.45  NA  NA  NA  NA   NA   NA 1.982575 0.05652215
[14,] 2.023581 17.30 15.43  NA  NA  NA  NA   NA   NA 1.969434 0.03743030
[15,] 1.946897 17.38 15.45  NA  NA  NA  NA   NA   NA 2.002206 0.07860079
[16,] 1.994929 17.36 15.48  NA  NA  NA  NA   NA   NA 1.990702 0.06200407
[17,] 2.033439 17.35 15.48  NA  NA  NA  NA   NA   NA 1.965828 0.02339232
[18,] 1.987763 17.39 15.53  NA  NA  NA  NA   NA   NA 2.013588 0.07225319
[19,] 1.955118 17.37 15.46  NA  NA  NA  NA   NA   NA 1.998582 0.08079887
[20,] 1.997717 17.32 15.46  NA  NA  NA  NA   NA   NA 1.997721 0.07113203
             init2 cf
 [1,] 6.682891e-05 NA
 [2,] 6.066808e-05 NA
 [3,] 5.759138e-05 NA
 [4,] 5.968018e-05 NA
 [5,] 8.704935e-05 NA
 [6,] 8.042139e-05 NA
 [7,] 4.896194e-05 NA
 [8,] 6.208216e-05 NA
 [9,] 6.053679e-05 NA
[10,] 6.721389e-05 NA
[11,] 6.783592e-05 NA
[12,] 7.645722e-05 NA
[13,] 5.384865e-05 NA
[14,] 3.723064e-05 NA
[15,] 6.778884e-05 NA
[16,] 4.530312e-05 NA
[17,] 3.327559e-05 NA
[18,] 4.681311e-05 NA
[19,] 6.297804e-05 NA
[20,] 4.511079e-05 NA


$CONF
$CONF$coef
          2.5%        97.5%
b -12.42576604 -11.78634898
c   0.02936753   0.09645788
d  11.29814443  11.34723989
e  17.53405721  17.63255581

$CONF$rmse
        2.5%      97.5%
x 0.07531743 0.09347108

$CONF$rss
       2.5%     97.5%
x 0.2553534 0.3931586

$CONF$gof
                2.5%         97.5%
Rsq       0.99968145   0.999792775
Rsq.ad    0.99966021   0.999778960
AIC    -108.56459595 -87.386948870
AICc   -107.65550505 -86.477857961
BIC     -99.10549446 -77.927847379
resVar    0.00567452   0.008736857
RMSE      0.07217782   0.089574725

$CONF$eff
              2.5%        97.5%
eff   1.924440e+00 2.028757e+00
cpD1  1.729475e+01 1.739000e+01
cpD2  1.535375e+01 1.550625e+01
cpE             NA           NA
cpR             NA           NA
cpT             NA           NA
Cy0             NA           NA
cpCQ            NA           NA
cpMR            NA           NA
fluo  1.957546e+00 2.020108e+00
init1 2.936753e-02 9.645788e-02
init2 3.515424e-05 8.390107e-05
cf              NA           NA


.........10.........20

fitting converged in 100% of iterations.

$ITER
$ITER$coef
              b          c        d        e
 [1,] -12.06324 0.06246085 11.33224 17.59872
 [2,] -11.98567 0.07452748 11.32704 17.59960
 [3,] -12.09357 0.06657089 11.32434 17.59852
 [4,] -12.05177 0.06598188 11.32562 17.58103
 [5,] -12.03872 0.06168509 11.31920 17.58839
 [6,] -12.18751 0.05882145 11.32622 17.60424
 [7,] -12.07366 0.06399193 11.32925 17.58170
 [8,] -12.12737 0.06606412 11.32382 17.60008
 [9,] -12.03098 0.06391563 11.32524 17.59114
[10,] -11.88679 0.06226664 11.32222 17.61069
[11,] -12.01773 0.07048660 11.31931 17.57317
[12,] -12.07935 0.06810776 11.32861 17.59939
[13,] -12.10917 0.08103771 11.32423 17.60329
[14,] -11.95692 0.07822810 11.32397 17.61463
[15,] -12.06905 0.05936599 11.32550 17.59635
[16,] -12.04772 0.06773819 11.33348 17.60168
[17,] -12.16097 0.06339438 11.33037 17.60427
[18,] -12.11225 0.07850313 11.32640 17.60266
[19,] -12.12372 0.07955945 11.31910 17.60072
[20,] -12.07232 0.06780612 11.32548 17.59855

$ITER$rmse
 [1] 0.08954116 0.08407532 0.08676906 0.08893704 0.08965883 0.08623156
 [7] 0.08881957 0.08837512 0.09154310 0.08735406 0.08686161 0.08496171
[13] 0.09157775 0.08687119 0.08759583 0.08956198 0.08693185 0.09145619
[19] 0.08859550 0.08911754

$ITER$rss
 [1] 0.3207048 0.2827464 0.3011548 0.3163919 0.3215482 0.2974353 0.3155566
 [8] 0.3124064 0.3352056 0.3052292 0.3017976 0.2887397 0.3354594 0.3018642
[15] 0.3069212 0.3208539 0.3022858 0.3345694 0.3139665 0.3176774

$ITER$gof
            Rsq    Rsq.ad       AIC      AICc       BIC      resVar       RMSE
 [1,] 0.9997042 0.9996820 -81.67606 -80.65042 -72.75511 0.008017620 0.08537415
 [2,] 0.9997520 0.9997334 -87.21877 -86.19313 -78.29782 0.007068660 0.08016267
 [3,] 0.9997212 0.9997003 -84.44352 -83.41787 -75.52257 0.007528869 0.08273105
 [4,] 0.9997133 0.9996918 -82.27180 -81.24616 -73.35085 0.007909796 0.08479814
 [5,] 0.9997106 0.9996889 -81.56050 -80.53485 -72.63955 0.008038705 0.08548634
 [6,] 0.9997309 0.9997107 -84.99033 -83.96469 -76.06938 0.007435882 0.08221857
 [7,] 0.9996992 0.9996767 -82.38811 -81.36247 -73.46716 0.007888915 0.08468613
 [8,] 0.9997001 0.9996776 -82.82956 -81.80392 -73.90862 0.007810161 0.08426237
 [9,] 0.9996984 0.9996758 -79.73025 -78.70461 -70.80930 0.008380139 0.08728292
[10,] 0.9997308 0.9997106 -83.85221 -82.82657 -74.93126 0.007630731 0.08328882
[11,] 0.9997307 0.9997105 -84.34970 -83.32406 -75.42875 0.007544939 0.08281930
[12,] 0.9997485 0.9997297 -86.29586 -85.27022 -77.37491 0.007218492 0.08100781
[13,] 0.9996604 0.9996349 -79.69695 -78.67130 -70.77600 0.008386485 0.08731596
[14,] 0.9997234 0.9997027 -84.33999 -83.31435 -75.41904 0.007546604 0.08282843
[15,] 0.9997269 0.9997065 -83.60899 -82.58334 -74.68804 0.007673029 0.08351934
[16,] 0.9997137 0.9996922 -81.65561 -80.62997 -72.73466 0.008021348 0.08539399
[17,] 0.9997237 0.9997030 -84.27857 -83.25293 -75.35762 0.007557146 0.08288626
[18,] 0.9996625 0.9996372 -79.81384 -78.78820 -70.89289 0.008364234 0.08720005
[19,] 0.9997178 0.9996966 -82.61039 -81.58475 -73.68944 0.007849163 0.08447250
[20,] 0.9997226 0.9997018 -82.09338 -81.06774 -73.17243 0.007941936 0.08497024

$ITER$eff
           eff  cpD1  cpD2 cpE cpR cpT Cy0 cpCQ cpMR     fluo      init1
 [1,] 1.966718 17.36 15.44  NA  NA  NA  NA   NA   NA 1.989446 0.06246085
 [2,] 1.948983 17.36 15.42  NA  NA  NA  NA   NA   NA 1.989025 0.07452748
 [3,] 1.966562 17.36 15.44  NA  NA  NA  NA   NA   NA 1.985388 0.06657089
 [4,] 1.964052 17.34 15.42  NA  NA  NA  NA   NA   NA 1.988037 0.06598188
 [5,] 1.965259 17.35 15.43  NA  NA  NA  NA   NA   NA 1.990521 0.06168509
 [6,] 1.981176 17.37 15.47  NA  NA  NA  NA   NA   NA 1.991111 0.05882145
 [7,] 1.967051 17.34 15.43  NA  NA  NA  NA   NA   NA 1.994187 0.06399193
 [8,] 1.969693 17.36 15.45  NA  NA  NA  NA   NA   NA 1.988635 0.06606412
 [9,] 1.962378 17.35 15.43  NA  NA  NA  NA   NA   NA 1.992025 0.06391563
[10,] 1.950549 17.36 15.41  NA  NA  NA  NA   NA   NA 1.974662 0.06226664
[11,] 1.956599 17.33 15.41  NA  NA  NA  NA   NA   NA 1.993958 0.07048660
[12,] 1.963378 17.36 15.44  NA  NA  NA  NA   NA   NA 1.989404 0.06810776
[13,] 1.953401 17.36 15.45  NA  NA  NA  NA   NA   NA 2.001379 0.08103771
[14,] 1.941331 17.37 15.43  NA  NA  NA  NA   NA   NA 1.993716 0.07822810
[15,] 1.970229 17.36 15.44  NA  NA  NA  NA   NA   NA 1.987103 0.05936599
[16,] 1.959936 17.36 15.44  NA  NA  NA  NA   NA   NA 1.994036 0.06773819
[17,] 1.975137 17.37 15.46  NA  NA  NA  NA   NA   NA 1.988493 0.06339438
[18,] 1.956135 17.36 15.45  NA  NA  NA  NA   NA   NA 1.999693 0.07850313
[19,] 1.956375 17.36 15.45  NA  NA  NA  NA   NA   NA 1.999068 0.07955945
[20,] 1.962702 17.36 15.44  NA  NA  NA  NA   NA   NA 1.991007 0.06780612
             init2 cf
 [1,] 5.799019e-05 NA
 [2,] 6.757716e-05 NA
 [3,] 5.794269e-05 NA
 [4,] 5.997978e-05 NA
 [5,] 5.908811e-05 NA
 [6,] 5.078040e-05 NA
 [7,] 5.836999e-05 NA
 [8,] 5.624677e-05 NA
 [9,] 6.048627e-05 NA
[10,] 6.670758e-05 NA
[11,] 6.422042e-05 NA
[12,] 5.953100e-05 NA
[13,] 6.435793e-05 NA
[14,] 7.149665e-05 NA
[15,] 5.634831e-05 NA
[16,] 6.130810e-05 NA
[17,] 5.352932e-05 NA
[18,] 6.292915e-05 NA
[19,] 6.279034e-05 NA
[20,] 5.989673e-05 NA


$CONF
$CONF$coef
         2.5%        97.5%
b -12.1749078 -11.92010052
c   0.0590801   0.08033553
d  11.3191458  11.33288991
e  17.5769019  17.61275712

$CONF$rmse
        2.5%      97.5%
x 0.08449636 0.09156129

$CONF$rss
       2.5%     97.5%
x 0.2855932 0.3353388

$CONF$gof
               2.5%         97.5%
Rsq      0.99966140   0.999750370
Rsq.ad   0.99963600   0.999731648
AIC    -86.78038894 -79.712764627
AICc   -85.75474791 -78.687123601
BIC    -77.85944077 -70.791816457
resVar   0.00713983   0.008383471
RMSE     0.08056411   0.087300268

$CONF$eff
              2.5%        97.5%
eff   1.944966e+00 1.978307e+00
cpD1  1.733475e+01 1.737000e+01
cpD2  1.541000e+01 1.546525e+01
cpE             NA           NA
cpR             NA           NA
cpT             NA           NA
Cy0             NA           NA
cpCQ            NA           NA
cpMR            NA           NA
fluo  1.979757e+00 2.000578e+00
init1 5.908010e-02 8.033553e-02
init2 5.208613e-05 6.963489e-05
cf              NA           NA

qpcR documentation built on May 2, 2019, 5:17 a.m.

Related to pcrboot in qpcR...