src/ratfor/rqfnb.r

subroutine rqfnb(n,p,a,y,rhs,d,u,beta,eps,wn,wp,nit,info)
integer n,p,info,nit(3)
double precision a(p,n),y(n),rhs(p),d(n),u(n),wn(n,9),wp(p,p+3)
double precision one,beta,eps
parameter( one = 1.0d0)
call lpfnb(n,p,a,y,rhs,d,u,beta,eps,wn(1,1),wn(1,2),
        wp(1,1),wn(1,3),wn(1,4),wn(1,5),wn(1,6),
        wp(1,2),wn(1,7),wn(1,8),wn(1,9),wp(1,3),wp(1,4),nit,info)
return
end
# This is a revised form of my primal-dual log barrier form of the
# interior point LP solver based on Lustig, Marsten and Shanno ORSA J Opt 1992.
# It is a projected Newton primal-dual logarithmic barrier method which uses
# the predictor-corrector approach of Mehrotra for the mu steps.
# For the sake of brevity we will call it a Frisch-Newton algorithm.
# Problem:
# 	min c'x s.t. Ax=b, 0<=x<=u
# 
# Denote dx,dy,dw,ds,dz as the steps for the respective variables x,y,w,s,z
# 
subroutine lpfnb(n,p,a,c,b,d,u,beta,eps,x,s,y,z,w,
	dx,ds,dy,dz,dw,dr,rhs,ada,nit,info)

integer n,p,pp,i,info,nit(3),maxit
double precision a(p,n),c(n),b(p)
double precision zero,one,mone,big,ddot,dmax1,dmin1,dxdz,dsdw
double precision deltap,deltad,beta,eps,mu,gap,g
double precision x(n),u(n),s(n),y(p),z(n),w(n),d(n),rhs(p),ada(p,p)
double precision dx(n),ds(n),dy(p),dz(n),dw(n),dr(n)

parameter( zero  = 0.0d0)
parameter( one   = 1.0d0)
parameter( mone  = -1.0d0)
parameter( big  = 1.0d+20)
parameter( maxit  = 500)

# Initialization:  We follow the notation of LMS
# On input we require:
# 
# 	c = n-vector of marginal costs (-y in the rq problem)
# 	a = p by n matrix of linear constraints (x' in rq)
# 	b = p-vector of rhs ((1-tau)x'e in rq)
#       u = upper bound vector ( e in rq)
# 	beta = barrier parameter, LMS recommend .99995
# 	eps = convergence tolerance, LMS recommend 10d-8
# 	
# 	the integer vector nit returns iteration counts
# 	the integer info contains an error code from the Cholesky in stepy
# 		info = 0 is fine
# 		info < 0 invalid argument to dposv 
# 		info > 0 singular matrix
nit(1)=0
nit(2)=0
nit(3)=n
pp=p*p
# Start at the OLS estimate for the dual vector y
call dgemv('N',p,n,one,a,p,c,1,zero,y,1)
do i=1,n
	d(i)=one
call stepy(n,p,a,d,y,ada,info)
if(info != 0) return
# put current residual vector in s (temporarily)
call dcopy(n,c,1,s,1)
call dgemv('T',p,n,mone,a,p,y,1,one,s,1)
# Initialize remaining variables
do i=1,n{
	if(dabs(s(i))<eps){
		z(i)=dmax1(s(i), zero) + eps
		w(i)=dmax1(-s(i),zero) + eps
		}
	else {
		z(i)=dmax1(s(i), zero) 
		w(i)=dmax1(-s(i),zero)
		}
	s(i)=u(i)-x(i)
	}
gap = ddot(n,z,1,x,1)+ddot(n,w,1,s,1)
while(gap > eps && nit(1)<maxit) {
	nit(1)=nit(1)+1
	do i = 1,n{
		d(i) = one/(z(i)/x(i) + w(i)/s(i))
		ds(i)=z(i)-w(i)
		dz(i)=d(i)*ds(i)
		}
	call dcopy(p,b,1,dy,1)#save rhs
	call dgemv('N',p,n,mone,a,p,x,1,one,dy,1) 
	call dgemv('N',p,n,one,a,p,dz,1,one,dy,1) 
	call dcopy(p,dy,1,rhs,1)#save rhs
	call stepy(n,p,a,d,dy,ada,info)
	if(info != 0) return
	call dgemv('T',p,n,one,a,p,dy,1,mone,ds,1) #ds -> A'dy - ds
	deltap=big
	deltad=big
	do i=1,n{
		dx(i)=d(i)*ds(i)
		ds(i)=-dx(i)
		dz(i)=-z(i)*(dx(i)/x(i) + one)
		dw(i)=-w(i)*(ds(i)/s(i) + one)
		if(dx(i)<0)deltap=dmin1(deltap,-x(i)/dx(i))
		if(ds(i)<0)deltap=dmin1(deltap,-s(i)/ds(i))
		if(dz(i)<0)deltad=dmin1(deltad,-z(i)/dz(i))
		if(dw(i)<0)deltad=dmin1(deltad,-w(i)/dw(i))
		}
	deltap=dmin1(beta*deltap,one)
	deltad=dmin1(beta*deltad,one)
	if(min(deltap,deltad) < one){
		nit(2)=nit(2)+1
		# Update mu
		mu = ddot(n,x,1,z,1)+ddot(n,s,1,w,1)
		g = mu + deltap*ddot(n,dx,1,z,1)+
			deltad*ddot(n,dz,1,x,1) +
			deltap*deltad*ddot(n,dz,1,dx,1)+
			deltap*ddot(n,ds,1,w,1)+
			deltad*ddot(n,dw,1,s,1) +
			deltap*deltad*ddot(n,ds,1,dw,1)
		mu = mu * ((g/mu)**3) /dble(2*n)
		# Compute modified step
		do i=1,n{
			dr(i)=d(i)*(mu*(1/s(i)-1/x(i))+
				dx(i)*dz(i)/x(i)-ds(i)*dw(i)/s(i))
			}
		call dswap(p,rhs,1,dy,1)
		call dgemv('N',p,n,one,a,p,dr,1,one,dy,1)# new rhs
		call dpotrs('U',p,1,ada,p,dy,p,info)# backsolve for dy
		call dgemv('T',p,n,one,a,p,dy,1,zero,u,1)#ds=A'ddy
		deltap=big
		deltad=big
		do i=1,n{
			dxdz =  dx(i)*dz(i)
			dsdw =  ds(i)*dw(i)
			dx(i)=  d(i)*(u(i)-z(i)+w(i))-dr(i)
			ds(i)= -dx(i)
			dz(i)= -z(i)+(mu - z(i)*dx(i) - dxdz)/x(i)
			dw(i)= -w(i)+(mu - w(i)*ds(i) - dsdw)/s(i)
			if(dx(i)<0)deltap=dmin1(deltap,-x(i)/dx(i))
			if(ds(i)<0)deltap=dmin1(deltap,-s(i)/ds(i))
			if(dz(i)<0)deltad=dmin1(deltad,-z(i)/dz(i))
			if(dw(i)<0)deltad=dmin1(deltad,-w(i)/dw(i))
			}
		deltap=dmin1(beta*deltap,one)
		deltad=dmin1(beta*deltad,one)
		}
	call daxpy(n,deltap,dx,1,x,1)
	call daxpy(n,deltap,ds,1,s,1)
	call daxpy(p,deltad,dy,1,y,1)
	call daxpy(n,deltad,dz,1,z,1)
	call daxpy(n,deltad,dw,1,w,1)
	gap = ddot(n,z,1,x,1)+ddot(n,w,1,s,1)
	}
# return residuals in the vector x
call daxpy(n,mone,w,1,z,1)
call dswap(n,z,1,x,1)
return
end
subroutine stepy(n,p,a,d,b,ada,info)
integer n,p,pp,i,info
double precision a(p,n),b(p),d(n),ada(p,p),zero
parameter( zero = 0.0d0)
# Solve the linear system ada'x=b by Choleski -- d is diagonal
# Note that a isn't altered, and on output ada returns the upper
# triangle Choleski factor, which can be reused, eg with blas dtrtrs
pp=p*p
do j=1,p
	do k=1,p
		ada(j,k)=zero
do i=1,n
	call dsyr('U',p,d(i),a(1,i),1,ada,p)
call dposv('U',p,1,ada,p,b,p,info)
return
end

Try the quantreg package in your browser

Any scripts or data that you put into this service are public.

quantreg documentation built on May 29, 2024, 8:57 a.m.