Description Usage Arguments Details References See Also Examples
Pn returns the probabilities that a generic Birth and Death process model has n customers.
1 2 |
x |
a object of class o_BnD |
... |
aditional arguments |
Pn returns the probabilities that a generic Birth and Death process model has n customers.
[Sixto2004] Sixto Rios Insua, Alfonso Mateos Caballero, M Concepcion Bielza Lozoya, Antonio Jimenez Martin (2004).
Investigacion Operativa. Modelos deterministicos y estocasticos.
Editorial Centro de Estudios Ramon Areces.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ## Generating a generic Birth and Death model with the same lambda and mu vectors as M/M/1 model
## create input parameters
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
i_BnD <- NewInput.BnD(lambda=lambda, mu=mu)
## Build the model
o_BnD <- QueueingModel(i_BnD)
## Returns the probabilities
Pn(o_BnD)
## Simulating M/M/1
lambda <- rep(1/4, 200)
mu <- rep(1/3, 200)
pn_bnd_mm1 <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
pn_mm1 <- Pn(QueueingModel(NewInput.MM1(lambda=1/4, mu=1/3, n=200)))
## Simulating M/M/2
lambda <- rep(5, 200)
mu <- c(1*10, rep(2*10, 199))
pn_mmc <- Pn(QueueingModel(NewInput.MMC(lambda=5, mu=10, c=2, n=200, method=0)))
pn_bnd_mmc <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
## Simulating M/M/1/K/K
lambda <- c(2*0.25, 0.25)
mu <- rep(4, 2)
pn_mm1kk <- Pn(QueueingModel(NewInput.MM1KK(lambda=0.25, mu=4, k=2, method=3)))
pn_bnd <- Pn(QueueingModel(NewInput.BnD(lambda=lambda, mu=mu)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.