SS_profile | R Documentation |
Iteratively changes the control file using SS_changepars.
SS_profile( dir = "C:/myfiles/mymodels/myrun/", masterctlfile = "control.ss_new", newctlfile = "control_modified.ss", linenum = NULL, string = NULL, profilevec = NULL, usepar = FALSE, globalpar = FALSE, parfile = "ss.par", parlinenum = NULL, parstring = NULL, dircopy = TRUE, exe.delete = FALSE, model = "ss", extras = "-nox", systemcmd = FALSE, saveoutput = TRUE, overwrite = TRUE, whichruns = NULL, version = "3.30", prior_check = TRUE, read_like = TRUE, verbose = TRUE )
dir |
Directory where input files and executable are located. |
masterctlfile |
Source control file. Default = "control.ss_new" |
newctlfile |
Destination for new control files (must match entry in starter file). Default = "control_modified.ss". |
linenum |
Line number of parameter to be changed. Can be used instead
of |
string |
String partially matching name of parameter to be changed. Can
be used instead of |
profilevec |
Vector of values to profile over. If you are profileing over multiple parameters at the same time this should be a data.frame or matrix with a column for each parameter. |
usepar |
Use PAR file from previous profile step for starting values? |
globalpar |
Use global par file ("parfile_original_backup.sso", which is
automatically copied from original |
parfile |
Name of par file to use (for 3.30 models, this needs to
remain 'ss.par'). When |
parlinenum |
Line number in par file to change (if usepar = TRUE). Can be a vector if you are profiling multiple parameters at the same time. |
parstring |
String in par file preceding line number to change as an alternative to parlinenum (only needed if usepar = TRUE). Can be a vector if you are profiling multiple parameters at the same time. |
dircopy |
Copy directories for each run? NOT IMPLEMENTED YET. |
exe.delete |
Delete exe files in each directory? NOT IMPLEMENTED YET. |
model |
Name of executable. Default = "ss". |
extras |
Additional commands to use when running SS. Default = "-nox" will reduce the amount of command-line output. |
systemcmd |
Should R call SS using "system" function instead of "shell". This may be required when running R in Emacs. Default = FALSE. |
saveoutput |
Copy output .SSO files to unique names. Default = TRUE. |
overwrite |
Overwrite any existing .SSO files. Default = TRUE. If FALSE, then some runs may be skipped. |
whichruns |
Optional vector of run indices to do. This can be used to re-run a subset of the cases in situations where the function was interrupted or some runs fail to converge. Must be a subset of 1:n, where n is the length of profilevec. |
version |
SS version number. Currently "3.24" or "3.30" are supported,
either as character or numeric values (noting that numeric 3.30 = 3.3).
|
prior_check |
Check to make sure the starter file is set to include the prior likelihood contribution in the total likelihood. Default = TRUE. |
read_like |
Read the table of likelihoods from each model as it finishes. Default = TRUE. Changing to FALSE should allow the function to play through even if something is wrong with reading the table. |
verbose |
Controls amount of info output to command line. Default = TRUE. |
The starting values used in this profile are not ideal and some models may not converge. Care should be taken in using an automated tool like this, and some models are likely to require rerunning with alternate starting values.
Also, someday this function will be improved to work directly with the
plotting function SSplotProfile()
, but they don't yet work well
together. Thus, even if SS_profile()
is used, the output should
be read using SSgetoutput()
or by multiple calls to
SS_output()
before sending to SSplotProfile()
.
Ian Taylor
SSplotProfile()
, SSgetoutput()
,
SS_changepars()
, SS_parlines()
## Not run: # note: don't run this in your main directory # make a copy in case something goes wrong mydir <- "C:/ss/Simple - Copy" # the following commands related to starter.ss could be done by hand # read starter file starter <- SS_readstarter(file.path(mydir, "starter.ss")) # change control file name in the starter file starter[["ctlfile"]] <- "control_modified.ss" # make sure the prior likelihood is calculated # for non-estimated quantities starter[["prior_like"]] <- 1 # write modified starter file SS_writestarter(starter, dir = mydir, overwrite = TRUE) # vector of values to profile over h.vec <- seq(0.3, 0.9, .1) Nprofile <- length(h.vec) # run SS_profile command profile <- SS_profile( dir = mydir, # directory # "NatM" is a subset of one of the # parameter labels in control.ss_new model = "ss", masterctlfile = "control.ss_new", newctlfile = "control_modified.ss", string = "steep", profilevec = h.vec ) # read the output files (with names like Report1.sso, Report2.sso, etc.) profilemodels <- SSgetoutput(dirvec = mydir, keyvec = 1:Nprofile) # summarize output profilesummary <- SSsummarize(profilemodels) # OPTIONAL COMMANDS TO ADD MODEL WITH PROFILE PARAMETER ESTIMATED MLEmodel <- SS_output("C:/ss/SSv3.24l_Dec5/Simple") profilemodels[["MLE"]] <- MLEmodel profilesummary <- SSsummarize(profilemodels) # END OPTIONAL COMMANDS # plot profile using summary created above SSplotProfile(profilesummary, # summary object profile.string = "steep", # substring of profile parameter profile.label = "Stock-recruit steepness (h)" ) # axis label # make timeseries plots comparing models in profile SSplotComparisons(profilesummary, legendlabels = paste("h =", h.vec)) ########################################################################### # example two-dimensional profile # (e.g. over 2 of the parameters in the low-fecundity stock-recruit function) base_dir <- "c:/mymodel" dir_profile_SR <- file.path(base_dir, "Profiles/Zfrac_and_Beta") # make a grid of values in both dimensions Zfrac and Beta # vector of values to profile over Zfrac_vec <- seq(from = 0.2, to = 0.6, by = 0.1) Beta_vec <- c(0.5, 0.75, 1.0, 1.5, 2.0) par_table <- expand.grid(Zfrac = Zfrac_vec, Beta = Beta_vec) nrow(par_table) ## [1] 25 head(par_table) ## Zfrac Beta ## 1 0.2 0.50 ## 2 0.3 0.50 ## 3 0.4 0.50 ## 4 0.5 0.50 ## 5 0.6 0.50 ## 6 0.2 0.75 # run SS_profile command # requires modified version of SS_profile available via # remotes::install_github("r4ss/r4ss@profile_issue_224") profile <- SS_profile( dir = dir_profile_SR, # directory masterctlfile = "control.ss_new", newctlfile = "control_modified.ss", string = c("Zfrac", "Beta"), profilevec = par_table, extras = "-nohess" ) # get model output profilemodels <- SSgetoutput( dirvec = dir_profile_SR, keyvec = 1:nrow(par_table), getcovar = FALSE ) n <- length(profilemodels) profilesummary <- SSsummarize(profilemodels) # add total likelihood (row 1) to table created above par_table[["like"]] <- as.numeric(profilesummary[["likelihoods"]][1, 1:n]) # reshape data frame into a matrix for use with contour like_matrix <- reshape2::acast(par_table, Zfrac ~ Beta, value.var = "like") # make contour plot contour( x = as.numeric(rownames(like_matrix)), y = as.numeric(colnames(like_matrix)), z = like_matrix ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.