View source: R/accessibility.R
accessibility | R Documentation |
Fast computation of access to opportunities given a selected decay function.
accessibility(
r5r_core,
origins,
destinations,
opportunities_colnames = "opportunities",
mode = "WALK",
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
percentiles = 50L,
decay_function = "step",
cutoffs = NULL,
decay_value = NULL,
fare_structure = NULL,
max_fare = Inf,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
draws_per_minute = 5L,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL
)
r5r_core |
An object to connect with the R5 routing engine, created with
|
origins , destinations |
Either a |
opportunities_colnames |
A character vector. The names of the columns
in the |
mode |
A character vector. The transport modes allowed for access,
transfer and vehicle legs of the trips. Defaults to |
mode_egress |
A character vector. The transport mode used after egress
from the last public transport. It can be either |
departure_datetime |
A POSIXct object. Please note that the departure
time only influences public transport legs. When working with public
transport networks, please check the |
time_window |
An integer. The time window in minutes for which |
percentiles |
An integer vector (max length of 5). Specifies the
percentile to use when returning accessibility estimates within the given
time window. Please note that this parameter is applied to the travel time
estimates that generate the accessibility results, and not to the
accessibility distribution itself (i.e. if the 25th percentile is
specified, the accessibility is calculated from the 25th percentile travel
time, which may or may not be equal to the 25th percentile of the
accessibility distribution itself). Defaults to 50, returning the
accessibility calculated from the median travel time. If a vector with
length bigger than 1 is passed, the output contains an additional column
that specifies the percentile of each accessibility estimate. Due to
upstream restrictions, only 5 percentiles can be specified at a time. For
more details, please see |
decay_function |
A string. Which decay function to use when calculating
accessibility. One of |
cutoffs |
A numeric vector (maximum length of 12). This parameter has
different effects for each decay function: it indicates the cutoff times
in minutes when calculating cumulative opportunities accessibility with
the |
decay_value |
A number. Extra parameter to be passed to the selected
|
fare_structure |
A fare structure object, following the convention
set in |
max_fare |
A number. The maximum value that trips can cost when calculating the fastest journey between each origin and destination pair. |
max_walk_time |
An integer. The maximum walking time (in minutes) to
access and egress the transit network, to make transfers within the network
or to complete walk-only trips. Defaults to no restrictions (numeric value
of |
max_bike_time |
An integer. The maximum cycling time (in minutes) to
access and egress the transit network, to make transfers within the network
or to complete bicycle-only trips. Defaults to no restrictions (numeric
value of |
max_car_time |
An integer. The maximum driving time (in minutes) to
access and egress the transit network. Defaults to no restrictions, as long
as |
max_trip_duration |
An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2 hours). |
walk_speed |
A numeric. Average walk speed in km/h. Defaults to 3.6 km/h. |
bike_speed |
A numeric. Average cycling speed in km/h. Defaults to 12 km/h. |
max_rides |
An integer. The maximum number of public transport rides allowed in the same trip. Defaults to 3. |
max_lts |
An integer between 1 and 4. The maximum level of traffic stress that cyclists will tolerate. A value of 1 means cyclists will only travel through the quietest streets, while a value of 4 indicates cyclists can travel through any road. Defaults to 2. Please see details for more information. |
draws_per_minute |
An integer. The number of Monte Carlo draws to
perform per time window minute when calculating travel time matrices and
when estimating accessibility. Defaults to 5. This would mean 300 draws in
a 60-minute time window, for example. This parameter only affects the
results when the GTFS feeds contain a |
n_threads |
An integer. The number of threads to use when running the router in parallel. Defaults to use all available threads (Inf). |
verbose |
A logical. Whether to show |
progress |
A logical. Whether to show a progress counter when running
the router. Defaults to |
output_dir |
Either |
A data.table
with accessibility estimates for all origin points.
This data.table
contain columns listing the origin id, the type of
opportunities to which accessibility was calculated, the travel time
percentile considered in the accessibility estimate and the specified
cutoff values (except in when decay_function
is fixed_exponential
, in
which case the cutoff
parameter is not used). If output_dir
is not
NULL
, the function returns the path specified in that parameter, in
which the .csv
files containing the results are saved.
R5
allows one to use different decay functions when calculating
accessibility. Please see the original R5
documentation from Conveyal for
more information on each one one
(https://docs.conveyal.com/learn-more/decay-functions). A summary of each
available option, as well as the value passed to decay_function
to use it
(inside parentheses) are listed below:
Step, also known as cumulative opportunities ("step"
):
a binary decay function used to find the sum of available opportunities
within a specific travel time cutoff.
Logistic CDF ("logistic"
):
This is the logistic function, i.e. the cumulative distribution function of
the logistic distribution, expressed such that its parameters are the median
(inflection point) and standard deviation. This function applies a sigmoid
rolloff that has a convenient relationship to discrete choice theory. Its
parameters can be set to reflect a whole population's tolerance for making
trips with different travel times. The function's value represents the
probability that a randomly chosen member of the population would accept
making a trip, given its duration. Opportunities are then weighted by how
likely it is that a person would consider them "reachable".
Calibration: The median parameter is controlled by the cutoff
parameter, leaving only the standard deviation to configure through the
decay_value
parameter.
Fixed Exponential ("fixed_exponential"
):
This function is of the form exp(-Lt)
where L is a single fixed decay
constant in the range (0, 1). It is constrained to be positive to ensure
weights decrease (rather than grow) with increasing travel time.
Calibration: This function is controlled exclusively by the L
constant,
given by the decay_value
parameter. Values provided in cutoffs
are
ignored.
Half-life Exponential Decay ("exponential"
):
This is similar to the fixed-exponential option above, but in this case the
decay parameter is inferred from the cutoffs
parameter values, which is
treated as the half-life of the decay.
Linear ("linear"
):
This is a simple, vaguely sigmoid option, which may be useful when you have
a sense of a maximum travel time that would be tolerated by any traveler,
and a minimum time below which all travel is perceived to be equally easy.
Calibration: The transition region is transposable and symmetric around
the cutoffs
parameter values, taking decay_value
minutes to taper down
from one to zero.
R5
allows for multiple combinations of transport modes. The options
include:
Transit modes: TRAM
, SUBWAY
, RAIL
, BUS
, FERRY
, CABLE_CAR
,
GONDOLA
, FUNICULAR
. The option TRANSIT
automatically considers all
public transport modes available.
Non transit modes: WALK
, BICYCLE
, CAR
, BICYCLE_RENT
,
CAR_PARK
.
When cycling is enabled in R5
(by passing the value BIKE
to either
mode
or mode_egress
), setting max_lts
will allow cycling only on
streets with a given level of danger/stress. Setting max_lts
to 1, for
example, will allow cycling only on separated bicycle infrastructure or
low-traffic streets and routing will revert to walking when traversing any
links with LTS exceeding 1. Setting max_lts
to 3 will allow cycling on
links with LTS 1, 2 or 3. Routing also reverts to walking if the street
segment is tagged as non-bikable in OSM (e.g. a staircase), independently of
the specified max LTS.
The default methodology for assigning LTS values to network edges is based on commonly tagged attributes of OSM ways. See more info about LTS in the original documentation of R5 from Conveyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:
LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those with separated bicycle facilities (such as parking-protected lanes or cycle tracks).
LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists have dedicated lanes and only have to interact with traffic at formal crossing.
LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may involve close proximity to moderate- or high-speed vehicular traffic.
LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists are required to mix with moderate- to high-speed vehicular traffic.
For advanced users, you can provide custom LTS values by adding a tag <key = "lts">
to the osm.pbf
file.
r5r
ignores the timezone attribute of datetime objects when parsing dates
and times, using the study area's timezone instead. For example, let's say
you are running some calculations using Rio de Janeiro, Brazil, as your study
area. The datetime as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S")
will be parsed as May 13th, 2019, 14:00h in
Rio's local time, as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz = "Europe/Paris")
will also be parsed as
the exact same date and time in Rio's local time, perhaps surprisingly,
ignoring the timezone attribute.
The travel_time_matrix()
, expanded_travel_time_matrix()
and
accessibility()
functions use an R5
-specific extension to the RAPTOR
routing algorithm (see Conway et al., 2017). This RAPTOR extension uses a
systematic sample of one departure per minute over the time window set by the
user in the 'time_window' parameter. A detailed description of base RAPTOR
can be found in Delling et al (2015). However, whenever the user includes
transit fares inputs to these functions, they automatically switch to use an
R5
-specific extension to the McRAPTOR routing algorithm.
Conway, M. W., Byrd, A., & van der Linden, M. (2017). Evidence-based transit and land use sketch planning using interactive accessibility methods on combined schedule and headway-based networks. Transportation Research Record, 2653(1), 45-53. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3141/2653-06")}
Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Transportation Science, 49(3), 591-604. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1287/trsc.2014.0534")}
library(r5r)
data_path <- system.file("extdata/poa", package = "r5r")
r5r_core <- setup_r5(data_path)
points <- read.csv(file.path(data_path, "poa_hexgrid.csv"))[1:5, ]
departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"
)
access <- accessibility(
r5r_core,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = 30,
max_trip_duration = 30
)
head(access)
# using a different decay function
access <- accessibility(
r5r_core,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "logistic",
cutoffs = 30,
decay_value = 1,
max_trip_duration = 30
)
head(access)
# using several cutoff values
access <- accessibility(
r5r_core,
origins = points,
destinations = points,
opportunities_colnames = "schools",
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = c(25, 30),
max_trip_duration = 30
)
head(access)
# calculating access to different types of opportunities
access <- accessibility(
r5r_core,
origins = points,
destinations = points,
opportunities_colnames = c("schools", "healthcare"),
mode = "WALK",
departure_datetime = departure_datetime,
decay_function = "step",
cutoffs = 30,
max_trip_duration = 30
)
head(access)
stop_r5(r5r_core)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.