View source: R/pareto_frontier.R
pareto_frontier | R Documentation |
Fast computation of travel time and monetary cost Pareto frontier between origin and destination pairs.
pareto_frontier(
r5r_core,
origins,
destinations,
mode = c("WALK", "TRANSIT"),
mode_egress = "WALK",
departure_datetime = Sys.time(),
time_window = 10L,
percentiles = 50L,
max_walk_time = Inf,
max_bike_time = Inf,
max_car_time = Inf,
max_trip_duration = 120L,
fare_structure = NULL,
fare_cutoffs = -1L,
walk_speed = 3.6,
bike_speed = 12,
max_rides = 3,
max_lts = 2,
n_threads = Inf,
verbose = FALSE,
progress = FALSE,
output_dir = NULL
)
r5r_core |
An object to connect with the R5 routing engine, created with
|
origins , destinations |
Either a |
mode |
A character vector. The transport modes allowed for access,
transfer and vehicle legs of the trips. Defaults to |
mode_egress |
A character vector. The transport mode used after egress
from the last public transport. It can be either |
departure_datetime |
A POSIXct object. Please note that the departure
time only influences public transport legs. When working with public
transport networks, please check the |
time_window |
An integer. The time window in minutes for which |
percentiles |
An integer vector (max length of 5). Specifies the percentile to use when returning travel time estimates within the given time window. Please note that this parameter is applied to the travel time estimates only (e.g. if the 25th percentile is specified, and the output between A and B is 15 minutes and 10 dollars, 25% of all trips cheaper than 10 dollars taken between these points are shorter than 15 minutes). Defaults to 50, returning the median travel time. If a vector with length bigger than 1 is passed, the output contains an additional column that specifies the percentile of each travel time and monetary cost combination. Due to upstream restrictions, only 5 percentiles can be specified at a time. For more details, please see R5 documentation at https://docs.conveyal.com/analysis/methodology#accounting-for-variability. |
max_walk_time |
An integer. The maximum walking time (in minutes) to
access and egress the transit network, to make transfers within the network
or to complete walk-only trips. Defaults to no restrictions (numeric value
of |
max_bike_time |
An integer. The maximum cycling time (in minutes) to
access and egress the transit network, to make transfers within the network
or to complete bicycle-only trips. Defaults to no restrictions (numeric
value of |
max_car_time |
An integer. The maximum driving time (in minutes) to
access and egress the transit network. Defaults to no restrictions, as long
as |
max_trip_duration |
An integer. The maximum trip duration in minutes. Defaults to 120 minutes (2 hours). |
fare_structure |
A fare structure object, following the convention
set in |
fare_cutoffs |
A numeric vector. The monetary cutoffs that
should be considered when calculating the Pareto frontier. Most of the
time you'll want this parameter to be the combination of all possible
fares listed in you |
walk_speed |
A numeric. Average walk speed in km/h. Defaults to 3.6 km/h. |
bike_speed |
A numeric. Average cycling speed in km/h. Defaults to 12 km/h. |
max_rides |
An integer. The maximum number of public transport rides allowed in the same trip. Defaults to 3. |
max_lts |
An integer between 1 and 4. The maximum level of traffic stress that cyclists will tolerate. A value of 1 means cyclists will only travel through the quietest streets, while a value of 4 indicates cyclists can travel through any road. Defaults to 2. Please see details for more information. |
n_threads |
An integer. The number of threads to use when running the router in parallel. Defaults to use all available threads (Inf). |
verbose |
A logical. Whether to show |
progress |
A logical. Whether to show a progress counter when running
the router. Defaults to |
output_dir |
Either |
A data.table
with the travel time and monetary cost Pareto frontier
between the specified origins and destinations. An additional column
identifying the travel time percentile is present if more than one value
was passed to percentiles
. Origin and destination pairs whose trips
couldn't be completed within the maximum travel time using less money than
the specified monetary cutoffs are not returned in the data.table
. If
output_dir
is not NULL
, the function returns the path specified in
that parameter, in which the .csv
files containing the results are
saved.
R5
allows for multiple combinations of transport modes. The options
include:
Transit modes: TRAM
, SUBWAY
, RAIL
, BUS
, FERRY
, CABLE_CAR
,
GONDOLA
, FUNICULAR
. The option TRANSIT
automatically considers all
public transport modes available.
Non transit modes: WALK
, BICYCLE
, CAR
, BICYCLE_RENT
,
CAR_PARK
.
When cycling is enabled in R5
(by passing the value BIKE
to either
mode
or mode_egress
), setting max_lts
will allow cycling only on
streets with a given level of danger/stress. Setting max_lts
to 1, for
example, will allow cycling only on separated bicycle infrastructure or
low-traffic streets and routing will revert to walking when traversing any
links with LTS exceeding 1. Setting max_lts
to 3 will allow cycling on
links with LTS 1, 2 or 3. Routing also reverts to walking if the street
segment is tagged as non-bikable in OSM (e.g. a staircase), independently of
the specified max LTS.
The default methodology for assigning LTS values to network edges is based on commonly tagged attributes of OSM ways. See more info about LTS in the original documentation of R5 from Conveyal at https://docs.conveyal.com/learn-more/traffic-stress. In summary:
LTS 1: Tolerable for children. This includes low-speed, low-volume streets, as well as those with separated bicycle facilities (such as parking-protected lanes or cycle tracks).
LTS 2: Tolerable for the mainstream adult population. This includes streets where cyclists have dedicated lanes and only have to interact with traffic at formal crossing.
LTS 3: Tolerable for "enthused and confident" cyclists. This includes streets which may involve close proximity to moderate- or high-speed vehicular traffic.
LTS 4: Tolerable only for "strong and fearless" cyclists. This includes streets where cyclists are required to mix with moderate- to high-speed vehicular traffic.
For advanced users, you can provide custom LTS values by adding a tag <key = "lts">
to the osm.pbf
file.
r5r
ignores the timezone attribute of datetime objects when parsing dates
and times, using the study area's timezone instead. For example, let's say
you are running some calculations using Rio de Janeiro, Brazil, as your study
area. The datetime as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S")
will be parsed as May 13th, 2019, 14:00h in
Rio's local time, as expected. But as.POSIXct("13-05-2019 14:00:00", format = "%d-%m-%Y %H:%M:%S", tz = "Europe/Paris")
will also be parsed as
the exact same date and time in Rio's local time, perhaps surprisingly,
ignoring the timezone attribute.
The detailed_itineraries()
and pareto_frontier()
functions use an
R5
-specific extension to the McRAPTOR routing algorithm. The
implementation used in detailed_itineraries()
allows the router to find
paths that are optimal and less than optimal in terms of travel time, with
some heuristics around multiple access modes, riding the same patterns, etc.
The specific extension to McRAPTOR to do suboptimal path routing is not
documented yet, but a detailed description of base McRAPTOR can be found in
Delling et al (2015). The implementation used in pareto_frontier()
, on the
other hand, returns only the fastest trip within a given monetary cutoff,
ignoring slower trips that cost the same. A detailed discussion on the
algorithm can be found in Conway and Stewart (2019).
Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit routing. Transportation Science, 49(3), 591-604. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1287/trsc.2014.0534")}
Conway, M. W., & Stewart, A. F. (2019). Getting Charlie off the MTA: a multiobjective optimization method to account for cost constraints in public transit accessibility metrics. International Journal of Geographical Information Science, 33(9), 1759-1787. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/13658816.2019.1605075")}
Other routing:
detailed_itineraries()
,
expanded_travel_time_matrix()
,
travel_time_matrix()
library(r5r)
# build transport network
data_path <- system.file("extdata/poa", package = "r5r")
r5r_core <- setup_r5(data_path = data_path)
# load origin/destination points
points <- read.csv(file.path(data_path, "poa_hexgrid.csv"))[1:5,]
# load fare structure object
fare_structure_path <- system.file(
"extdata/poa/fares/fares_poa.zip",
package = "r5r"
)
fare_structure <- read_fare_structure(fare_structure_path)
departure_datetime <- as.POSIXct(
"13-05-2019 14:00:00",
format = "%d-%m-%Y %H:%M:%S"
)
pf <- pareto_frontier(
r5r_core,
origins = points,
destinations = points,
mode = c("WALK", "TRANSIT"),
departure_datetime = departure_datetime,
fare_structure = fare_structure,
fare_cutoffs = c(4.5, 4.8, 9, 9.3, 9.6)
)
head(pf)
stop_r5(r5r_core)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.