Nothing
## ----setup, include=FALSE-----------------------------------------------------
#knitr::opts_chunk$set(echo = FALSE, message = FALSE, warning = FALSE)
knitr::opts_chunk$set(warning = FALSE)
knitr::opts_chunk$set(cache=TRUE)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Current version
# install.packages('rADA')
#
# # Development version
# devtools::install_github('egmg726/rADA')
#
## ---- message=FALSE-----------------------------------------------------------
library(rADA)
library(forestplot)
library(ggplot2)
library(grid)
library(gridExtra)
library(reshape2)
## -----------------------------------------------------------------------------
data(lognormAssay)
## -----------------------------------------------------------------------------
head(lognormAssay)
## -----------------------------------------------------------------------------
assay.obj <- importAssay(lognormAssay, exp.name = 'Experiment1')
## -----------------------------------------------------------------------------
assay.obj <- calcCvStats(assay.obj)
## -----------------------------------------------------------------------------
names(assay.obj@stats)
## -----------------------------------------------------------------------------
table(assay.obj@stats$is.adj.df$D1Op2)
## -----------------------------------------------------------------------------
table(assay.obj@stats$is.adj.df$D2Op1)
## -----------------------------------------------------------------------------
head(assay.obj@melted.data, n = 7)
## -----------------------------------------------------------------------------
evalBoxplot(assay.obj, var = 'Day')
## -----------------------------------------------------------------------------
evalBoxplot(assay.obj, var = 'Operator') + theme_minimal()
## -----------------------------------------------------------------------------
evalBoxplot(assay.obj, var = 'Replicate') + ggplot2::theme_minimal() + ggplot2::scale_fill_manual(values='#00a4b2')
## -----------------------------------------------------------------------------
# Create the boxplot for the top of the plot
p1 <- ggplot(assay.obj@melted.data, aes(x=Category,y=value)) + stat_boxplot(geom ='errorbar',width=0.2, size = 1.5) +geom_boxplot(size = 1.1) + coord_flip() + scale_y_continuous(limits = c(0, 40)) +
theme(
axis.title=element_text(size=12,face="bold"),
panel.background = element_blank(),
panel.grid = element_blank(),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x=element_blank(),
axis.ticks.y=element_blank(),
panel.border = element_rect(colour = "black", fill=NA, size=2),
axis.text.x=element_blank(),
axis.text.y=element_blank())
# Create the histogram for the bottom of the plot
p2 <- ggplot(assay.obj@melted.data, aes(x=value)) + geom_histogram(aes(x = value, y = ..density..), colour="black", fill="#6c78a7", size = 2) + scale_x_continuous(limits = c(0, 40)) +
stat_function(fun = dnorm, args = list(mean = mean(assay.obj@melted.data$value, na.rm = TRUE), sd = sd(assay.obj@melted.data$value, na.rm = TRUE)), size = 2) +
theme(
axis.title=element_text(size=12,face="bold"),
panel.border = element_rect(colour = "black", fill=NA, size=2),
panel.background = element_blank(),
panel.grid = element_blank())
## -----------------------------------------------------------------------------
grid.newpage()
grid.draw(rbind(ggplotGrob(p1), ggplotGrob(p2), size = "last"))
## -----------------------------------------------------------------------------
evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = FALSE, return.object=FALSE)
## -----------------------------------------------------------------------------
assay.obj <- evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = TRUE, transf.method = 'log10')
## -----------------------------------------------------------------------------
names(assay.obj@stats)
## -----------------------------------------------------------------------------
# Results from the Shapiro-Wilks test
print(assay.obj@stats$sw.results)
# Calculated skewness value
print(assay.obj@stats$skewness)
# Recommendation based on the previous 2 values
print(assay.obj@stats$recommendation)
## -----------------------------------------------------------------------------
assay.obj <- evalNorm(assay.obj = assay.obj, category = 'Experiment1', data.transf = FALSE, excl.outliers = TRUE)
## -----------------------------------------------------------------------------
assay.obj <- scp(assay.obj = assay.obj,
category = 'Experiment1',
distrib = 'nonparametric',
data.transf = FALSE,
rm.out = FALSE)
print(assay.obj@scp.table)
## -----------------------------------------------------------------------------
assay.obj <- scp(assay.obj = assay.obj,
category = 'Experiment1',
distrib = 'normal', #assay.norm.eval$recommendation,
data.transf = TRUE,
transf.method = 'log10',
rm.out = FALSE)
print(assay.obj@scp.table)
## -----------------------------------------------------------------------------
scpForestPlot(assay.obj)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.