Nothing
#' Estimate start values for TPC fitting
#'
#' @description Estimates sensible start values for fitting thermal performance curves
#' @param x vector of temperature values
#' @param y vector of rate values
#' @param model_name the name of the model being fitted
#' @author Daniel Padfield
#' @return Named list of start parameters given the data and model being fitted
#' @export get_start_vals
get_start_vals <- function(x, y, model_name) {
mod_names <- c('sharpeschoolhigh_1981', 'sharpeschoollow_1981', 'sharpeschoolfull_1981', 'johnsonlewin_1946', 'lactin2_1995', 'oneill_1972', 'quadratic_2008', 'ratkowsky_1983', 'rezende_2019', 'spain_1982', 'thomas_2012', 'thomas_2017', 'weibull_1995', 'kamykowski_1985', 'joehnk_2008', 'hinshelwood_1947', 'gaussian_1987', 'flinn_1991', 'delong_2017', 'briere2_1999', 'boatman_2017', 'beta_2012', 'modifiedgaussian_2006', 'pawar_2018', 'lrf_1991', 'deutsch_2008')
if (model_name %in% mod_names == FALSE){
stop("supplied model_name is not an available model in rTPC. Please check the spelling of model_name.")
}
# make data frame
d <- data.frame(x, y, stringsAsFactors = FALSE)
d <- d[order(d$x),]
# split data into post topt and pre topt
post_topt <- d[d$x >= mean(d[d$y == max(d$y, na.rm = TRUE),'x']),]
pre_topt <- d[d$x <= mean(d[d$y == max(d$y, na.rm = TRUE),'x']),]
if(model_name == 'sharpeschoolhigh_1981'){
r_tref = mean(d$y, na.rm = TRUE)
pre_topt$x2 <- 1/(8.62e-05*(pre_topt$x + 273.15))
post_topt$x2 <- 1/(8.62e-05*(post_topt$x + 273.15))
e <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt))[2][[1]] * -1, error = function(err) 0.6))
eh = suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, post_topt))[2][[1]], error = function(err) 5))
th = mean(d[d$x >= mean(d[d$y == max(d$y, na.rm = TRUE),'x']), 'x'])
return(c(r_tref = r_tref, e = e, eh = eh, th = th))
}
if(model_name == 'sharpeschoolfull_1981'){
r_tref = mean(d$y, na.rm = TRUE)
pre_topt$x2 <- 1/(8.62e-05*(pre_topt$x + 273.15))
post_topt$x2 <- 1/(8.62e-05*(post_topt$x + 273.15))
tl <- pre_topt$x[2]
e <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt))[2][[1]] * -1, error = function(err) 0.6))
eh = suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, post_topt))[2][[1]], error = function(err) 5))
el <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt[1:3,]))[2][[1]] * -1, error = function(err) 5))
th = mean(d[d$x >= mean(d[d$y == max(d$y, na.rm = TRUE),'x']), 'x'])
return(c(r_tref = r_tref, e = e, el = el, tl = tl, eh = eh, th = th))
}
if(model_name == 'sharpeschoollow_1981'){
r_tref = mean(d$y, na.rm = TRUE)
pre_topt$x2 <- 1/(8.62e-05*(pre_topt$x + 273.15))
post_topt$x2 <- 1/(8.62e-05*(post_topt$x + 273.15))
e <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt))[2][[1]] * -1, error = function(err) 0.6))
el <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt[1:3,]))[2][[1]] * -1, error = function(err) 5))
tl <- pre_topt$x[2]
return(c(r_tref = r_tref, e = e, el = el, tl = tl))
}
if(model_name == 'briere2_1999'){
tmin = min(d$x, na.rm = TRUE)
tmax = max(d$x, na.rm = TRUE)
b = 3
a = 2 * 10^-4
return(c(tmin = tmin, tmax = tmax, a = a, b = b))
}
if(model_name == 'thomas_2012'){
c = max(d$x, na.rm = TRUE) - min(d$x, na.rm = TRUE)
b = 0
topt = mean(d$x[d$y==max(d$y, na.rm = TRUE)])
a = max(d$y)/max(exp(b*d$x)*(1-((d$x-topt)/(c/2))^2))
return(c(a = a, b = b, c = c, topt = topt))
}
if(model_name == 'ratkowsky_1983'){
tmin = min(d$x, na.rm = TRUE)
tmax = max(d$x, na.rm = TRUE)
a = 1
b = 0.1
return(c(tmin = tmin, tmax = tmax, a = a, b = b))
}
if(model_name == 'quadratic_2008'){
b = (-2*-0.005*max(d$y, na.rm = TRUE))
a = max(d$y, na.rm = TRUE) - max(b*d$x - 0.005*(d$x^2), na.rm = TRUE)
c = -2
return(c(a = a, b = b, c = c))
}
if(model_name == 'lactin2_1995'){
tmax = max(d$x, na.rm = TRUE)
delta_t = mean(tmax - d$x[d$y == max(d$y, na.rm = TRUE)])
a = 0.1194843
b = -0.254008
return(c(a = a, b = b, tmax = tmax, delta_t = delta_t))
}
if(model_name == 'gaussian_1987'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
a = max(d$x, na.rm = TRUE) - min(d$x, na.rm = TRUE)
return(c(rmax = rmax, topt = topt, a = a))
}
if(model_name == 'rezende_2019'){
b = mean(d[d$x == mean(d[d$y == max(d$y, na.rm = TRUE),'x']),]$x)
q10 = 2.77
a = 0.0577
c = 0.003
return(c(q10 = q10, a = a, b = b, c = c))
}
if(model_name == 'delong_2017'){
c = 14.45
eb = 0.58
ef = 2.215
fit <- suppressWarnings(stats::lm(log(y) ~ x+I(x^2), post_topt))
roots <- suppressWarnings(polyroot(stats::coef(fit)))
tm = suppressWarnings(as.numeric(max(Re(roots))))
ehc = 0.085
return(c(c = c, eb = eb, ef = ef, tm = tm, ehc = ehc))
}
if(model_name == 'thomas_2017'){
a = 1.174
b = 0.064
c = 1.119
d = 0.267
e = 0.103
return(c(a=a, b=b, c=c, d=d, e=e))
}
if(model_name == 'boatman_2017'){
rmax = max(d$y, na.rm = TRUE)
tmin = min(d$x, na.rm = TRUE)
tmax = max(d$x, na.rm = TRUE)
a = 1.1
b = 0.4
return(c(rmax = rmax, tmin = tmin, tmax = tmax, a = a, b = b))
}
if(model_name == 'flinn_1991'){
b = (-2*0.005*d$x[d$y==max(d$y)])[1]
a = -min(b*d$x +0.005*(d$x^2))
c = 1
return(c(a = a, b = b, c = c))
}
if(model_name == 'joehnk_2008'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
a = mean(c(5.77, 4.68, 18.61))
b = mean(c(1.30,1.02,1.02))
c = mean(c(1.37,1.15,1.04))
return(c(rmax = rmax, topt = topt, a = a, b = b, c = c))
}
if(model_name == 'oneill_1972'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
ctmax = max(d$x, na.rm = TRUE)
q10 = 1.7
return(c(rmax = rmax, ctmax = ctmax, topt = topt, q10 = q10))
}
if(model_name == 'kamykowski_1985'){
tmin = min(d$x, na.rm = TRUE)
tmax = max(d$x, na.rm = TRUE)
a = 1.242143
b = 0.5882857
c = 1.238821
return(c(tmin = tmin, tmax = tmax, a=a, b=b, c=c))
}
if(model_name == 'hinshelwood_1947'){
a = 595892892
b = 1.57e+30
e = 0.5125673
eh = 1.922022
return(c(a=a, e=e, b=b, eh = eh))}
if(model_name == 'beta_2012'){
a = max(d$y, na.rm = TRUE)
b = mean(d$x[d$y == max(d$y, na.rm = TRUE)])
c = mean(d$x[d$y == max(d$y, na.rm = TRUE)])
d = 2
e = 2
return(c(a=a, b=b, c=c, d=d, e=e))}
if(model_name == 'modifiedgaussian_2006'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
a = (max(d$x, na.rm = TRUE) - min(d$x, na.rm = TRUE))/2
b = 2
return(c(rmax = rmax, topt = topt, a = a, b=b))
}
if(model_name == 'weibull_1995'){
a = mean(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == max(d$y, na.rm = TRUE)])
b = max(d$x, na.rm = TRUE) - min(d$x, na.rm = TRUE)
c = 4
return(c(a = a, topt = topt, b=b,c=c))
}
if(model_name == 'johnsonlewin_1946'){
r0 = min(d$y, na.rm = TRUE)
pre_topt$x2 <- 1/(8.62e-05*(pre_topt$x + 273.15))
post_topt$x2 <- 1/(8.62e-05*(post_topt$x + 273.15))
e <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt))[2][[1]] * -1, error = function(err) 0.6))
eh = suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, post_topt))[2][[1]], error = function(err) 5))
topt = mean(d$x[d$y == max(d$y, na.rm = TRUE)])
return(c(r0 = r0, e = e, eh = eh, topt = topt))
}
if(model_name == 'spain_1982'){
r0 = min(d$y, na.rm = TRUE)
a = 0
b = 0
c = 0
return(c(a = a, b = b, c = c, r0 = r0))
}
if(model_name == 'pawar_2018'){
r_tref = mean(d$y, na.rm = TRUE)
pre_topt$x2 <- 1/(8.62e-05*(pre_topt$x + 273.15))
post_topt$x2 <- 1/(8.62e-05*(post_topt$x + 273.15))
e <- suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, pre_topt))[2][[1]] * -1, error = function(err) 0.6))
eh = suppressWarnings(tryCatch(stats::coef(stats::lm(log(y) ~ x2, post_topt))[2][[1]], error = function(err) 5))
topt = mean(d$x[d$y == max(d$y, na.rm = TRUE)])
return(c(r_tref = r_tref, e = e, eh = eh, topt = topt))
}
if(model_name == 'lrf_1991'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
tmin = min(d$x, na.rm = TRUE)
tmax = max(d$x, na.rm = TRUE)
return(c(rmax = rmax, topt = topt, tmin = tmin, tmax = tmax))
}
if(model_name == 'deutsch_2008'){
rmax = max(d$y, na.rm = TRUE)
topt = mean(d$x[d$y == rmax])
ctmax = max(d$x, na.rm = TRUE)
# use the width of the temperatures measured divided by 5. Somewhat arbritary
a = (max(d$x, na.rm = TRUE) - min(d$x, na.rm = TRUE))/5
return(c(rmax = rmax, topt = topt, ctmax = ctmax, a = a))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.