Nothing
#' Medical History Analysis Dataset (ADMH)
#'
#' @description `r lifecycle::badge("stable")`
#'
#' Function for generating a random Medical History Analysis Dataset for a given
#' Subject-Level Analysis Dataset.
#'
#' @details One record per each record in the corresponding SDTM domain.
#'
#' Keys: `STUDYID`, `USUBJID`, `ASTDTM`, `MHSEQ`
#'
#' @inheritParams argument_convention
#' @param max_n_mhs (`integer`)\cr Maximum number of MHs per patient. Defaults to 10.
#' @template param_cached
#' @templateVar data admh
#'
#' @return `data.frame`
#' @export
#'
#' @examples
#' adsl <- radsl(N = 10, study_duration = 2, seed = 1)
#'
#' admh <- radmh(adsl, seed = 2)
#' admh
radmh <- function(adsl,
max_n_mhs = 10L,
lookup = NULL,
seed = NULL,
na_percentage = 0,
na_vars = list(MHBODSYS = c(NA, 0.1), MHDECOD = c(1234, 0.1)),
cached = FALSE) {
checkmate::assert_flag(cached)
if (cached) {
return(get_cached_data("cadmh"))
}
checkmate::assert_data_frame(adsl)
checkmate::assert_integer(max_n_mhs, len = 1, any.missing = FALSE)
checkmate::assert_number(seed, null.ok = TRUE)
checkmate::assert_number(na_percentage, lower = 0, upper = 1)
checkmate::assert_true(na_percentage < 1)
checkmate::assert_data_frame(lookup, null.ok = TRUE)
lookup_mh <- if (!is.null(lookup)) {
lookup
} else {
tibble::tribble(
~MHBODSYS, ~MHDECOD, ~MHSOC,
"cl A", "trm A_1/2", "cl A",
"cl A", "trm A_2/2", "cl A",
"cl B", "trm B_1/3", "cl B",
"cl B", "trm B_2/3", "cl B",
"cl B", "trm B_3/3", "cl B",
"cl C", "trm C_1/2", "cl C",
"cl C", "trm C_2/2", "cl C",
"cl D", "trm D_1/3", "cl D",
"cl D", "trm D_2/3", "cl D",
"cl D", "trm D_3/3", "cl D"
)
}
if (!is.null(seed)) {
set.seed(seed)
}
study_duration_secs <- lubridate::seconds(attr(adsl, "study_duration_secs"))
admh <- Map(
function(id, sid) {
n_mhs <- sample(0:max_n_mhs, 1)
i <- sample(seq_len(nrow(lookup_mh)), n_mhs, TRUE)
dplyr::mutate(
lookup_mh[i, ],
USUBJID = id,
STUDYID = sid
)
},
adsl$USUBJID,
adsl$STUDYID
) %>%
Reduce(rbind, .) %>%
`[`(c(4, 5, 1, 2, 3)) %>%
dplyr::mutate(MHTERM = MHDECOD)
admh <- rcd_var_relabel(
admh,
STUDYID = "Study Identifier",
USUBJID = "Unique Subject Identifier"
)
# merge ADSL to be able to add MH date and study day variables
admh <- dplyr::inner_join(
admh,
adsl,
by = c("STUDYID", "USUBJID")
) %>%
dplyr::rowwise() %>%
dplyr::mutate(TRTENDT = lubridate::date(dplyr::case_when(
is.na(TRTEDTM) ~ lubridate::floor_date(lubridate::date(TRTSDTM) + study_duration_secs, unit = "day"),
TRUE ~ TRTEDTM
))) %>%
dplyr::mutate(ASTDTM = sample(
seq(lubridate::as_datetime(TRTSDTM), lubridate::as_datetime(TRTENDT), by = "day"),
size = 1
)) %>%
dplyr::mutate(ASTDY = ceiling(difftime(ASTDTM, TRTSDTM, units = "days"))) %>%
# add 1 to end of range incase both values passed to sample() are the same
dplyr::mutate(AENDTM = sample(
seq(lubridate::as_datetime(ASTDTM), lubridate::as_datetime(TRTENDT + 1), by = "day"),
size = 1
)) %>%
dplyr::mutate(AENDY = ceiling(difftime(AENDTM, TRTSDTM, units = "days"))) %>%
select(-TRTENDT) %>%
dplyr::ungroup() %>%
dplyr::arrange(STUDYID, USUBJID, ASTDTM, MHTERM) %>%
dplyr::mutate(MHDISTAT = sample(
x = c("Resolved", "Ongoing with treatment", "Ongoing without treatment"),
prob = c(0.6, 0.2, 0.2),
size = dplyr::n(),
replace = TRUE
)) %>%
dplyr::mutate(ATIREL = dplyr::case_when(
(AENDTM < TRTSDTM | (is.na(AENDTM) & MHDISTAT == "Resolved")) ~ "PRIOR",
(AENDTM >= TRTSDTM | (is.na(AENDTM) & grepl("Ongoing", MHDISTAT))) ~ "PRIOR_CONCOMITANT"
))
admh <- admh %>%
dplyr::group_by(USUBJID) %>%
dplyr::mutate(MHSEQ = seq_len(dplyr::n())) %>%
dplyr::mutate(ASEQ = MHSEQ) %>%
dplyr::ungroup() %>%
dplyr::arrange(STUDYID, USUBJID, ASTDTM, MHSEQ)
if (length(na_vars) > 0 && na_percentage > 0 && na_percentage <= 1) {
admh <- mutate_na(ds = admh, na_vars = na_vars, na_percentage = na_percentage)
}
# apply metadata
admh <- apply_metadata(admh, "metadata/ADMH.yml")
return(admh)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.