iv_sens | R Documentation |
iv_sens
performs a non-parametric, instrumental
variable sensitivity analysis on matched pairs following the logic of
the Neyman-Rubin framework for causal inference. The function supports
a variable-valued instrument.
iv_sens(Rt, Rc, Dt, Dc, Gamma = 6, GammaInc = 1)
Rt,Rc |
Vectors of observed response outcomes for matched treatment and control observations, respectively. |
Dt,Dc |
Vectors of observed doses for matched observations, respectively. This is level of dose encouraged by the instrument. |
Gamma |
Upper-bound on gamma parameter. |
GammaInc |
To set user specified increments for gamma parameter. |
Given matched pairs of observations on an instrument Z
,
which encourages dose D
, this function performs a Rosenbaum's bounds sensitivity analysis. Note that matching is done on levels of the instrument.
Returns an object of class rbounds
.
Luke Keele, University of Pennsylvania, luke.keele@gmail.com
Angrist, Joshua D., Imbens, Guido W., and Rubin, Donald B. (1996). "Identification of Causal Effects Using Instrumental Variables." Journal of the American Statistical Association 91/434, pp. 444–455.
Rosenbaum, Paul R. (1996). "Comment." Journal of the American Statistical Association 91/434, pp. 465–468.
Rosenbaum, Paul R. (2002). Observational Studies. Springer-Verlag.
Rosenbaum, Paul R. (2010). Design of Observational Studies. Springer-Verlag.
See also binarysens
, hlsens
, mcontrol
data(angristlavy) # Example from Ch 5 of Design of Observational Studies #Extract Matched Outome Data Rt <- angristlavy$avgmath[angristlavy$z==1] Rc <- angristlavy$avgmath[angristlavy$z==0] #Extract Matched Doses #Doses Encouraged By Instrument - Here Class Size Dt <- angristlavy$clasz[angristlavy$z==1] Dc <- angristlavy$clasz[angristlavy$z==0] #Run Sensitivity Analsyis - Rank Sum Test iv_sens(Rc, Rt, Dc, Dt, Gamma=1.5, GammaInc=.01)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.