Description Usage Arguments Value Author(s) See Also Examples
Tests equality of means by a t-test for each covariate, between the two full groups or around the discontinuity threshold
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | covarTest_mean(
object,
bw = NULL,
paired = FALSE,
var.equal = FALSE,
p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel", "bonferroni")
)
## S3 method for class 'rdd_data'
covarTest_mean(
object,
bw = NULL,
paired = FALSE,
var.equal = FALSE,
p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel", "bonferroni")
)
## S3 method for class 'rdd_reg'
covarTest_mean(
object,
bw = NULL,
paired = FALSE,
var.equal = FALSE,
p.adjust = c("none", "holm", "BH", "BY", "hochberg", "hommel", "bonferroni")
)
|
object |
object of class rdd_data |
bw |
a bandwidth |
paired |
Argument of the |
var.equal |
Argument of the |
p.adjust |
Whether to adjust the p-values for multiple testing. Uses the |
A data frame with, for each covariate, the mean on each size, the difference, t-stat and ts p-value.
Matthieu Stigler <Matthieu.Stigler@gmail.com>
covarTest_dis
for the Kolmogorov-Smirnov test of equality of distribution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(house)
## Add randomly generated covariates
set.seed(123)
n_Lee <- nrow(house)
Z <- data.frame(z1 = rnorm(n_Lee, sd=2),
z2 = rnorm(n_Lee, mean = ifelse(house<0, 5, 8)),
z3 = sample(letters, size = n_Lee, replace = TRUE))
house_rdd_Z <- rdd_data(y = house$y, x = house$x, covar = Z, cutpoint = 0)
## test for equality of means around cutoff:
covarTest_mean(house_rdd_Z, bw=0.3)
## Can also use function covarTest_dis() for Kolmogorov-Smirnov test:
covarTest_dis(house_rdd_Z, bw=0.3)
## covarTest_mean works also on regression outputs (bw will be taken from the model)
reg_nonpara <- rdd_reg_np(rdd_object=house_rdd_Z)
covarTest_mean(reg_nonpara)
|
Loading required package: AER
Loading required package: car
Loading required package: carData
Loading required package: lmtest
Loading required package: zoo
Attaching package: 'zoo'
The following objects are masked from 'package:base':
as.Date, as.Date.numeric
Loading required package: sandwich
Loading required package: survival
Loading required package: np
Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-9)
[vignette("np_faq",package="np") provides answers to frequently asked questions]
[vignette("np",package="np") an overview]
[vignette("entropy_np",package="np") an overview of entropy-based methods]
mean of x mean of y Difference statistic p.value
z1 0.004268177 0.0218581 0.01758993 -0.2539109 0.7995803
z2 5.005608 7.984865 2.979257 -84.84982 0
z3 13.18888 13.43534 0.2464617 -0.9409715 0.3467888
statistic p.value
z1 0.03482029 0.2726692
z2 0.8647849 0
z3 0.03008545 0.447416
Warning message:
In ks.test(x[regime], x[!regime], exact = exact) :
p-value will be approximate in the presence of ties
mean of x mean of y Difference statistic p.value
z1 -0.009705805 0.03187163 0.04157744 -0.5931762 0.5531052
z2 5.007297 7.981714 2.974417 -83.8092 0
z3 13.20138 13.48257 0.2811852 -1.060392 0.2890465
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.