Nothing
# __________________ #< 75c51fb80e1d6de1d19a0a8257294c4a ># __________________
# Swirl 3d ####
#' @title Swirl the values around an origin in 3 dimensions
#' @description
#' \Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}
#'
#' The values are swirled counterclockwise around a specified origin.
#' The swirling is done by rotating around the origin, basing the degrees
#' for each rotation-axis on the distances to the origin as so:
#' \deqn{x_degrees = scale_fn(distances) / (2 * x_radius) * 360}
#'
#' The origin can be supplied as coordinates or as a function that returns coordinates. The
#' latter can be useful when supplying a grouped \code{data.frame} and swirling around e.g. the centroid
#' of each group.
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @param x_radius,y_radius,z_radius Radiuses of the
#' most-inner swirls around each axis (in the \emph{simplest} case).
#' Can be \code{vector}s with multiple radiuses.
#'
#' E.g. the \code{`x_radius`} specifies the radius when rotating \emph{around} the x-axis,
#' not the radius \emph{on} the x-axis.
#'
#' Note: With a custom \code{`scaling_fn`}, these might not be the actual swirl radiuses anymore. Think of
#' them more as width settings where a larger number leads to fewer full rotations.
#' @param x_col,y_col,z_col Name of x/y/z column in \code{`data`}. All must be specified.
#' @param origin Coordinates of the origin to swirl around.
#' \code{Vector} with 3 elements (i.e. origin_x, origin_y, origin_z).
#' Ignored when \code{`origin_fn`} is not \code{NULL}.
#' @param scale_fn Function for scaling the distances before calculating the degrees.
#'
#' \strong{Input}: A \code{numeric vector} (the distances).
#'
#' \strong{Output}: A \code{numeric vector} (the scaled distances) of the same length.
#'
#' E.g.:
#'
#' \code{function(d)\{}
#'
#' \verb{ }\code{d ^ 1.5}
#'
#' \code{\}}
#' @param degrees_col_name Name of new column with the degrees. If \code{NULL}, no column is added.
#'
#' Also adds a string version with the same name + \code{"_str"}, making it easier to group by the degrees
#' when plotting multiple rotations.
#' @param origin_col_name Name of new column with the origin coordinates. If \code{NULL}, no column is added.
#' @param radius_col_name Name of new column with the radiuses. If \code{NULL}, no column is added.
#' @export
#' @return \code{data.frame} (\code{tibble}) with new columns containing
#' the swirled x- and y-values, the degrees, the radiuses, and the origin coordinates.
#' @family mutate functions
#' @family rotation functions
#' @family distance functions
#' @inheritParams multi_mutator_
#' @examples
#' # Attach packages
#' library(rearrr)
#' library(dplyr)
#' has_ggplot <- require(ggplot2) # Attach if installed
#'
#' # Set seed
#' set.seed(4)
#'
#' # Create a data frame
#' df <- data.frame(
#' "x" = 1:50,
#' "y" = 1:50,
#' "z" = 1:50,
#' "r1" = runif(50),
#' "r2" = runif(50) * 35,
#' "o" = 1,
#' "g" = rep(1:5, each = 10)
#' )
#'
#' # Swirl values around (0, 0, 0)
#' swirl_3d(
#' data = df,
#' x_radius = 45,
#' x_col = "x",
#' y_col = "y",
#' z_col = "z",
#' origin = c(0, 0, 0)
#' )
#'
#' # Swirl around the centroid
#' df_swirled <- swirl_3d(
#' data = df,
#' x_col = "x",
#' y_col = "y",
#' z_col = "z",
#' x_radius = c(100, 0, 0),
#' y_radius = c(0, 100, 0),
#' z_radius = c(0, 0, 100),
#' origin_fn = centroid
#' )
#'
#' df_swirled
#'
#' # Plot swirls
#' if (has_ggplot){
#' ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +
#' geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_path(alpha = .4) +
#' geom_point() +
#' theme_minimal() +
#' labs(x = "x", y = "y", color = "radius", alpha = "z (opacity)")
#' }
#'
#' \dontrun{
#' # Plot 3d with plotly
#' plotly::plot_ly(
#' x = df_swirled$x_swirled,
#' y = df_swirled$y_swirled,
#' z = df_swirled$z_swirled,
#' type = "scatter3d",
#' mode = "markers",
#' color = df_swirled$.radius_str
#' )
#' }
#'
#' # Swirl around the centroid
#' df_swirled <- swirl_3d(
#' data = df,
#' x_col = "x",
#' y_col = "y",
#' z_col = "z",
#' x_radius = c(50, 0, 0),
#' y_radius = c(0, 50, 0),
#' z_radius = c(0, 0, 50),
#' origin_fn = centroid
#' )
#'
#' df_swirled
#'
#' # Plot swirls
#' if (has_ggplot){
#' ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +
#' geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_path(alpha = .4) +
#' geom_point() +
#' theme_minimal() +
#' labs(x = "x", y = "y", color = "radius", alpha = "z (opacity)")
#' }
#'
#' \dontrun{
#' # Plot 3d with plotly
#' plotly::plot_ly(
#' x = df_swirled$x_swirled,
#' y = df_swirled$y_swirled,
#' z = df_swirled$z_swirled,
#' type = "scatter3d",
#' mode = "markers",
#' color = df_swirled$.radius_str
#' )
#' }
#' \donttest{
#'
#' df_swirled <- swirl_3d(
#' data = df,
#' x_col = "x",
#' y_col = "y",
#' z_col = "z",
#' x_radius = c(25, 50, 25, 25),
#' y_radius = c(50, 75, 100, 25),
#' z_radius = c(75, 25, 25, 25),
#' origin_fn = centroid,
#' scale_fn = function(x) {
#' x^0.81
#' }
#' )
#'
#' # Plot swirls
#' if (has_ggplot){
#' ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +
#' geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_path(alpha = .4) +
#' geom_point() +
#' theme_minimal() +
#' labs(x = "x", y = "y", color = "radius", alpha = "z (opacity)")
#' }
#' }
#'
#' \dontrun{
#' # Plot 3d with plotly
#' plotly::plot_ly(
#' x = df_swirled$x_swirled,
#' y = df_swirled$y_swirled,
#' z = df_swirled$z_swirled,
#' type = "scatter3d",
#' mode = "markers",
#' color = df_swirled$.radius_str
#' )
#' }
#' \donttest{
#'
#' #
#' # Swirl random data
#' # The trick lies in finding the right radiuses
#' #
#'
#' # Swirl the random columns
#' df_swirled <- swirl_3d(
#' data = df,
#' x_col = "r1",
#' y_col = "r2",
#' z_col = "o",
#' x_radius = c(0, 0, 0, 0),
#' y_radius = c(0, 30, 60, 90),
#' z_radius = c(10, 10, 10, 10),
#' origin_fn = centroid
#' )
#'
#' # Not let's rotate it every 10 degrees
#' df_rotated <- df_swirled %>%
#' rotate_3d(
#' x_col = "r1_swirled",
#' y_col = "r2_swirled",
#' z_col = "o_swirled",
#' x_deg = rep(0, 36),
#' y_deg = rep(0, 36),
#' z_deg = (1:36) * 10,
#' suffix = "",
#' origin = df_swirled$.origin[[1]],
#' overwrite = TRUE
#' )
#'
#' # Plot rotated swirls
#' if (has_ggplot){
#' ggplot(
#' df_rotated,
#' aes(
#' x = r1_swirled,
#' y = r2_swirled,
#' color = .degrees_str,
#' alpha = o_swirled
#' )
#' ) +
#' geom_vline(xintercept = mean(df$r1), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_hline(yintercept = mean(df$r2), size = 0.2, alpha = .4, linetype = "dashed") +
#' geom_point(show.legend = FALSE) +
#' theme_minimal() +
#' labs(x = "r1", y = "r2", color = "radius", alpha = "o (opacity)")
#' }
#' }
swirl_3d <- function(data,
x_col,
y_col,
z_col,
x_radius = 0,
y_radius = 0,
z_radius = 0,
suffix = "_swirled",
origin = NULL,
origin_fn = NULL,
scale_fn = identity,
keep_original = TRUE,
degrees_col_name = ".degrees",
radius_col_name = ".radius",
origin_col_name = ".origin",
overwrite = FALSE) {
# Check arguments ####
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_data_frame(data, min.cols = 3, add = assert_collection)
checkmate::assert_numeric(
x_radius,
any.missing = FALSE,
min.len = 1,
add = assert_collection
)
checkmate::assert_numeric(
y_radius,
any.missing = FALSE,
min.len = 1,
add = assert_collection
)
checkmate::assert_numeric(
z_radius,
any.missing = FALSE,
min.len = 1,
add = assert_collection
)
checkmate::assert_string(x_col, add = assert_collection)
checkmate::assert_string(y_col, add = assert_collection)
checkmate::assert_string(z_col, add = assert_collection)
checkmate::assert_string(suffix, add = assert_collection)
checkmate::assert_string(degrees_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_string(radius_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_string(origin_col_name, null.ok = TRUE, add = assert_collection)
checkmate::assert_numeric(origin,
len = 3,
any.missing = FALSE,
null.ok = TRUE,
add = assert_collection
)
checkmate::assert_function(origin_fn, null.ok = TRUE, add = assert_collection)
checkmate::assert_function(scale_fn, nargs = 1, add = assert_collection)
checkmate::reportAssertions(assert_collection)
checkmate::assert_character(
c(x_col, y_col, z_col),
min.chars = 1,
any.missing = FALSE,
len = 3,
unique = TRUE,
add = assert_collection
)
if (!all(length(x_radius) == c(length(y_radius), length(z_radius)))) {
assert_collection$push(
paste0(
"'x_radius', 'y_radius', and 'z_radius' must all have the same length but had lengths: ",
paste0(c(
length(x_radius), length(y_radius), length(z_radius)
), collapse = ", "),
"."
)
)
}
checkmate::reportAssertions(assert_collection)
# Check if we will need to overwrite columns
check_unique_colnames_(x_col, y_col, z_col, degrees_col_name, origin_col_name, radius_col_name)
check_overwrite_(data = data, nm = degrees_col_name, overwrite = overwrite)
check_overwrite_(data = data, nm = origin_col_name, overwrite = overwrite)
check_overwrite_(data = data, nm = radius_col_name, overwrite = overwrite)
# End of argument checks ####
# Mutate for each degree
output <- purrr::map_dfr(
.x = purrr::transpose(list(x_radius, y_radius, z_radius)) %>%
purrr::simplify_all(),
.f = function(radiuses) {
out <- multi_mutator_(
data = data,
mutate_fn = swirl_3d_mutator_method_,
check_fn = NULL,
force_df = TRUE,
min_dims = 3,
keep_original = keep_original,
cols = c(x_col, y_col, z_col),
overwrite = overwrite,
x_radius = radiuses[[1]],
y_radius = radiuses[[2]],
z_radius = radiuses[[3]],
scale_fn = scale_fn,
suffix = suffix,
origin = origin,
origin_fn = origin_fn,
degrees_col_name = degrees_col_name,
origin_col_name = origin_col_name
)
if (!is.null(radius_col_name)) {
out[[radius_col_name]] <- list_coordinates_(
radiuses,
names = c(x_col, y_col, z_col)
)
}
out
}
)
if (!is.null(radius_col_name)) {
output <- paste_coordinates_column_(output, radius_col_name)
}
output
}
swirl_3d_mutator_method_ <- function(data,
grp_id,
cols,
overwrite,
x_radius,
y_radius,
z_radius,
scale_fn,
suffix,
origin,
origin_fn,
degrees_col_name,
origin_col_name,
...) {
# Extract columns
x_col <- cols[[1]]
y_col <- cols[[2]]
z_col <- cols[[3]]
# Convert columns to list of vectors
dim_vectors <- as.list(data[, cols, drop = FALSE])
# Find origin if specified
origin <- apply_coordinate_fn_(
dim_vectors = dim_vectors,
coordinates = origin,
fn = origin_fn,
num_dims = length(cols),
coordinate_name = "origin",
fn_name = "origin_fn",
dim_var_name = "cols",
grp_id = grp_id,
allow_len_one = FALSE
)
# Calculate distances to origin
distances <- calculate_distances_(dim_vectors = dim_vectors, to = origin)
# Scale distances
scaled_distances <- scale_fn(distances)
if (length(scaled_distances) != length(distances)) {
stop("the output of 'scale_fn' must have the same length as the input.")
}
# Convert distances to degrees
x_degrees <- calculate_swirl_degrees_(distances = scaled_distances, radius = x_radius)
y_degrees <- calculate_swirl_degrees_(distances = scaled_distances, radius = y_radius)
z_degrees <- calculate_swirl_degrees_(distances = scaled_distances, radius = z_radius)
# Add degrees column
deg_tmp_var <- create_tmp_var(data = data, tmp_var = ".__degrees__", disallowed = degrees_col_name)
data[[deg_tmp_var]] <- list(x_degrees, y_degrees, z_degrees) %>%
purrr::transpose() %>%
purrr::simplify_all() %>%
purrr::map(~ {
setNames(.x, cols)
})
# Call rotate_3d for each unique distance
data <- purrr::map_dfr(.x = split(data, f = scaled_distances), .f = ~ {
tmp_degrees <- .x[[deg_tmp_var]][[1]]
rotate_3d(
data = .x,
x_col = x_col,
y_col = y_col,
z_col = z_col,
x_deg = tmp_degrees[[1]],
y_deg = tmp_degrees[[2]],
z_deg = tmp_degrees[[3]],
origin = origin,
suffix = suffix,
origin_col_name = NULL,
degrees_col_name = NULL,
overwrite = overwrite
)
})
# Add info columns
if (!is.null(origin_col_name)) {
data[[origin_col_name]] <- list_coordinates_(origin, names = cols)
}
if (!is.null(degrees_col_name)) {
data[[degrees_col_name]] <- data[[deg_tmp_var]]
}
# Remove temporary column
data[[deg_tmp_var]] <- NULL
data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.