Nothing
#' @importFrom stats runif
# first series of function: SGD
# model: continuous.uniform.loc par1 = center, fixed: par2 = length [center-length/2,center+length/2]
SGD.MMD.continuous.uniform.loc = function(x, par1, par2, kernel, bdwth, burnin, nstep, stepsize, epsilon) {
n = length(x)
# preparation of the output "res"
res = list(par1=par1, par2=par2, stepsize=stepsize, bdwth=bdwth, error=NULL, estimator=NULL)
# sanity check for the initialization, otherwise, set the default initialization for SGD
if (is.null(par1)) {
par = median(x)
} else if ((is.double(par1)==FALSE)||(length(par1)!=1)) {
res$error = c(res$error,"par1 must be numerical")
} else {
par=par1
}
if (is.null(par2)) {
res$error = c(res$error,"par2 missing")
} else if ((is.double(par2)==FALSE)||(length(par2)!=1)) {
res$error = c(res$error,"par2 must be numerical")
} else if (par2<=0) {
res$error = c(res$error,"par2 must be positive")
}
if (is.null(res$error)==FALSE) return(res)
# initialization of norm.grad
if (stepsize=="auto") stepsize = par2/sqrt(12)
norm.grad = epsilon
res$par1 = par
res$par2 = par2
res$stepsize=stepsize
# BURNIN period
for (i in 1:burnin) {
x.sampled = runif(n = n, min = par-par2/2, max = par+par2/2)
ker = K1d.diff(x.sampled,x,kernel=kernel,bdwth=bdwth)
grad = -2*mean(ker)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
}
# SGD period
par_mean = par
for (i in 1:nstep) {
x.sampled = runif(n = n, min = par-par2/2, max = par+par2/2)
ker = K1d.diff(x.sampled,x,kernel=kernel,bdwth=bdwth)
grad = -2*mean(ker)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par_mean = (par_mean*i + par)/(i+1)
}
# return
res$estimator = par_mean
return(res)
}
# model: continuous.uniform.upper par2 = upper, fixed par1, uniform on [par1, upper]
SGD.MMD.continuous.uniform.upper = function(x, par1, par2, kernel, bdwth, burnin, nstep, stepsize, epsilon) {
n = length(x)
# preparation of the output "res"
res = list(par1=par1, par2=par2, stepsize=stepsize, bdwth=bdwth, error=NULL, estimator=NULL)
# sanity check for the initialization, otherwise, set the default initialization for SGD
if (is.null(par1)) {
res$error = c(res$error,"par1 missing")
} else if ((is.double(par1)==FALSE)||(length(par1)!=1)) {
res$error = c(res$error,"par1 must be numerical")
}
if (is.null(par2)) {
par = 2*median(x)-par1
} else if ((is.double(par2)==FALSE)||(length(par2)!=1)) {
res$error = c(res$error,"par2 must be numerical")
} else if (par2<=par1) {
res$error = c(res$error,"par2 must be > par1")
}
if (is.null(res$error)==FALSE) return(res)
# initialization of norm.grad
if (stepsize=="auto") stepsize=(par-par1)/sqrt(12)
norm.grad = epsilon
res$par1 = par1
res$par2 = par
res$stepsize=stepsize
# BURNIN period
for (i in 1:burnin) {
x.sampled = runif(n = n, min = 0, max = 1)
x.sampled.scaled = par1 + (par-par1)*x.sampled
ker = K1d.diff(x.sampled.scaled,x.sampled.scaled,kernel=kernel,bdwth=bdwth)/(n-1)- K1d.diff(x.sampled.scaled,x,kernel=kernel,bdwth=bdwth)/n
grad = 2*mean(x.sampled%*%ker)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
}
# SGD period
par_mean = par
for (i in 1:nstep) {
x.sampled = runif(n = n, min = 0, max = 1)
x.sampled.scaled = par1 + (par-par1)*x.sampled
ker = K1d.diff(x.sampled.scaled,x.sampled.scaled,kernel=kernel,bdwth=bdwth)/(n-1)- K1d.diff(x.sampled.scaled,x,kernel=kernel,bdwth=bdwth)/n
grad = 2*mean(x.sampled%*%ker)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par_mean = (par_mean*i + par)/(i+1)
}
# return
res$estimator = par_mean
return(res)
}
# second series of function: GD
# model: continuous.uniform.lower.upper par1 = lower par2 = upper, uniform on [lower, upper]
SGD.MMD.continuous.uniform.lower.upper = function(x, par1, par2, kernel, bdwth, burnin, nstep, stepsize, epsilon) {
n = length(x)
# preparation of the output "res"
res = list(par1=par1, par2=par2, stepsize=stepsize, bdwth=bdwth, error=NULL, estimator=NULL)
# sanity check for the initialization, otherwise, set the default initialization for SGD
med = median(x)
dev = 2*median(abs(x-med))
par = c(0,0)
if (is.null(par1)) {
par[1] = med-dev
} else if ((is.double(par1)==FALSE)||(length(par1)!=1)) {
res$error = c(res$error,"par1 must be numerical")
} else {
par[1] = par1
}
if (is.null(par2)) {
par[2] = med+dev
} else if ((is.double(par2)==FALSE)||(length(par2)!=1)) {
res$error = c(res$error,"par2 must be numerical")
} else if (par2<=par1) {
res$error = c(res$error,"par2 must be > par1")
} else {
par[2] = par2
}
if (is.null(res$error)==FALSE) return(res)
# initialization of norm.grad
if (stepsize=="auto") stepsize = 2*dev/sqrt(12)
norm.grad = epsilon
res$par1 = par[1]
res$par2 = par[2]
res$stepsize=stepsize
# BURNIN period
for (i in 1:burnin) {
x.sampled = runif(n = n, min = 0, max = 1)
x.sampled.scaled = par[1] + (par[2]-par[1])*x.sampled
ker1 = K1d.diff(x.sampled.scaled,x.sampled.scaled,kernel=kernel,bdwth=bdwth)/(n-1)
ker2 = K1d.diff(x.sampled.scaled,x,kernel=kernel,bdwth=bdwth)/n
grad1 = mean(-x.sampled%*%ker1-(1-x.sampled)%*%ker2)
grad2 = mean(x.sampled%*%ker1-x.sampled%*%ker2)
grad = 2*c(grad1,grad2)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
if (par[1]>par[2]) {temp=par[1]; par[1]=par[2]; par[2]=temp}
}
# SGD period
par_mean = par
for (i in 1:nstep) {
x.sampled = runif(n = n, min = 0, max = 1)
x.sampled.scaled = par[1] + (par[2]-par[1])*x.sampled
ker1 = K1d.diff(x.sampled.scaled,x.sampled.scaled,kernel=kernel,bdwth=bdwth)/(n-1)
ker2 = K1d.diff(x.sampled.scaled,x,kernel=kernel,bdwth=bdwth)/n
grad1 = mean(-x.sampled%*%ker1-(1-x.sampled)%*%ker2)
grad2 = mean(x.sampled%*%ker1-x.sampled%*%ker2)
grad = 2*c(grad1,grad2)
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par_mean = (par_mean*i + par)/(i+1)
}
# return
res$estimator = par_mean
return(res)
}
# model: continuous.uniform.loc par1 = center, fixed: par2 = length [center-length/2,center+length/2]
GD.MMD.continuous.uniform.loc = function(x, par1, par2, kernel, bdwth, burnin, nstep, stepsize, epsilon) {
# preparation of the output "res"
res = list(par1=par1, par2=par2, stepsize=stepsize, bdwth=bdwth, error=NULL, estimator=NULL)
# sanity check for the initialization, otherwise, set the default initialization for SGD
if (is.null(par1)) {
par = median(x)
} else if ((is.double(par1)==FALSE)||(length(par1)!=1)) {
res$error = c(res$error,"par1 must be numerical")
} else {
par=par1
}
if (is.null(par2)) {
res$error = c(res$error,"par2 missing")
} else if ((is.double(par2)==FALSE)||(length(par2)!=1)) {
res$error = c(res$error,"par2 must be numerical")
} else if (par2<=0) {
res$error = c(res$error,"par2 must be positive")
}
if (is.null(res$error)==FALSE) return(res)
# initialization of norm.grad
if (stepsize=="auto") stepsize=par2/sqrt(12)
norm.grad = epsilon
res$par1 = par
res$par2 = par2
res$stepsize=stepsize
# BURNIN period
for (i in 1:burnin) {
diff = x-par
grad = -2*mean(K1d(par+0.5*par2,x,kernel=kernel,bdwth=bdwth)-K1d(par-0.5*par2,x,kernel=kernel,bdwth=bdwth))
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
}
# GD period
par_mean = par
for (i in 1:nstep) {
diff = x-par
grad = -2*mean(K1d(par+0.5*par2,x,kernel=kernel,bdwth=bdwth)-K1d(par-0.5*par2,x,kernel=kernel,bdwth=bdwth))
norm.grad = norm.grad + grad^2
par = par-stepsize*grad/sqrt(norm.grad)
par_mean = (par_mean*i + par)/(i+1)
}
# return
res$estimator = par_mean
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.