Memory-Based Learning in Spectral Chemometrics

Vignettes

148

34

68

**check_pc_arguments:**checks the pc_selection argument**cor_diss:**Correlation and moving correlation dissimilarity measurements...**dissimilarity:**Dissimilarity computation between matrices**diss_to_neighbors:**From dissimilarity matrix to neighbors**euclid_to_mahal:**A function for transforming a matrix from its Euclidean space...**eval_multi_pc_diss:**evaluation of multiple distances obtained with multiple PCs**fast_diss:**A fast distance algorithm for two matrices written in C++**fast_diss_vector:**A fast algorithm of (squared) Euclidean cross-distance for...**f_diss:**Euclidean, Mahalanobis and cosine dissimilarity measurements**fit_and_predict:**Local multivariate regression**format_xr_xu_indices:**format internal messages**gaussian_pr_cv:**Cross validation for Gaussian process regression**gaussian_process:**Gaussian process regression with linear kernel...**gaussian_process_cv:**Internal Cpp function for performing leave-group-out cross...**get_col_largest_sd:**Function for identifiying the column in a matrix with the...**get_col_sds:**Standard deviation of columns**get_column_means:**Function for computing the mean of each column in a matrix**get_column_sds:**Function for computing the standard deviation of each column...**get_column_sums:**Function for computing sum of each column in a matrix**get_eval_categorical:**get the evaluation results for categorical data**get_eval_continuous:**get the evaluation results for continuous data**get_ith_local_neighbors:**A function to obtain the local neighbors based on...**get_local_pls_weights:**Internal Cpp function for computing the weights of the PLS...**get_neighbor_info:**A function to get the neighbor information**get_predictions:**Extract predictions from an object of class 'mbl'**get_samples_from_strata:**A function for stratified calibration/validation sampling**get_sample_strata:**A function to assign values to sample distribution strata**get_wapls_weights:**Internal function for computing the weights of the PLS...**get_weights:**Computes the weights for pls regressions**ith_mbl_neighbor:**An iterator for local prediction data in mbl**ith_subsets_ortho_diss:**iterator for nearest neighbor subsets**local_fit:**Local fit functions**local_ortho_diss:**local ortho dissimilarity matrices initialized by a global...**mbl:**A function for memory-based learning (mbl)**mbl_control:**A function that controls some few aspects of the memory-based...**moving_cor_diss:**Moving/rolling correlation distance of two matrices**opls:**orthogonal scores algorithn of partial leat squares (opls)**opls_cv_cpp:**Internal Cpp function for performing leave-group-out...**opls_for_projection:**orthogonal scores algorithn of partial leat squares (opls)...**opls_get_all:**orthogonal scores algorithn of partial leat squares...**opls_get_basics:**fast orthogonal scores algorithn of partial leat squares...**opls_gs:**orthogonal scores algorithm of partial leat squares (opls)**optim_sample_strata:**A function to construct an optimal strata for the samples,...**ortho_diss:**A function for computing dissimilarity matrices from...**ortho_projection:**Orthogonal projections using principal component analysis and...**overall_var:**Function for computing the overall variance of a matrix**pca_nipals:**Principal components based on the non-linear iterative...**pkg_info:**Get the package version info**plot.mbl:**Plot method for an object of class 'mbl'**plot.ortho_projection:**Plot method for an object of class 'ortho_projection'**Browse all...**

View source: R/ortho_projection_helpers.R

check_pc_arguments | R Documentation |

internal

```
check_pc_arguments(
n_rows_x,
n_cols_x,
pc_selection,
default_max_comp = 40,
default_max_cumvar = 0.99,
default_max_var = 0.01
)
```

resemble documentation built on April 21, 2023, 1:13 a.m.

What can we improve?

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.

Close