resemble-package | R Documentation |
Functions for memory-based learning
This is the version 2.2.3 – embryo of the package. It implements a number of functions useful for modeling complex spectral spectra (e.g. NIR, IR). The package includes functions for dimensionality reduction, computing spectral dissimilarity matrices, nearest neighbor search, and modeling spectral data using memory-based learning. This package builds upon the methods presented in Ramirez-Lopez et al. (2013) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.geoderma.2012.12.014")}.
Development versions can be found in the github repository of the package at https://github.com/l-ramirez-lopez/resemble.
The functions available for dimensionality reduction are:
ortho_projection
pc_projection
pls_projection
predict.ortho_projection
The functions available for computing dissimilarity matrices are:
dissimilarity
f_diss
cor_diss
sid
ortho_diss
The functions available for evaluating dissimilarity matrices are:
sim_eval
The functions available for nearest neighbor search:
search_neighbors
The functions available for modeling spectral data:
mbl
mbl_control
Other supplementary functions:
plot.mbl
plot.ortho_projection
Maintainer / Creator: Leonardo Ramirez-Lopez ramirez.lopez.leo@gmail.com
Authors:
Leonardo Ramirez-Lopez (ORCID)
Antoine Stevens (ORCID)
Claudio Orellano
Raphael Viscarra Rossel (ORCID)
Zefang Shen
Craig Lobsey (ORCID)
Alex Wadoux (ORCID)
Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Dematte, J.A.M., Scholten, T. 2013a. The spectrum-based learner: A new local approach for modeling soil vis-NIR spectra of complex data sets. Geoderma 195-196, 268-279.
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.