Working with Distributions

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

Distributions

Distributions are a set of classes available in {reservr} to specify distribution families of random variables. A Distribution inherits from the R6 Class Distribution and provides all functionality necessary for working with a specific family.

A Distribution can be defined by calling one of the constructor functions, prefixed by dist_ in the package. All constructors accept parameters of the family as arguments. If these arguments are specified, the corresponding parameter is considered fixed in the sense that it need not be specified when computing something for the distribution and it will be assumed fixed when calling fit() on the distribution instance.

Sample

For example, an unspecified normal distribution can be created by calling dist_normal() without arguments. This means the parameters mean and sd are considered placeholders. If we want to, e.g., sample from norm, we must specify these placeholders in the with_params argument:

library(reservr)
set.seed(1L)
# Instantiate an unspecified normal distribution
norm <- dist_normal()
x <- norm$sample(n = 10L, with_params = list(mean = 3, sd = 1))

set.seed(1L)
norm2 <- dist_normal(sd = 1)
x2 <- norm2$sample(n = 10L, with_params = list(mean = 3))

# the same RVs are drawn because the distribution parameters and the seed were the same
stopifnot(identical(x, x2))

Density

The density() function computes the density of the distribution with respect to its natural measure. Use is_discrete_at() to check if a point has discrete mass or lebesgue density.

norm$density(x, with_params = list(mean = 3, sd = 1))
dnorm(x, mean = 3, sd = 1)
norm$density(x, log = TRUE, with_params = list(mean = 3, sd = 1)) # log-density
norm$is_discrete_at(x, with_params = list(mean = 3, sd = 1))

# A discrete distribution with mass only at point = x[1].
dd <- dist_dirac(point = x[1])
dd$density(x)
dd$is_discrete_at(x)

diff_density() computes the gradient of the density with respect to each free parameter. Setting log = TRUE computes the gradient of the log-density, i.e., the gradient of log f(x, params) instead.

norm$diff_density(x, with_params = list(mean = 3, sd = 1))

Probability

With probability(), the c.d.f., survival function, and their logarithms can be computed. For discrete distributions, dist$probability(x, lower.tail = TRUE) returns $P(X \le x)$ and dist$probability(x, lower.tail = FALSE) returns $P(X > x)$.

norm$probability(x, with_params = list(mean = 3, sd = 1))
pnorm(x, mean = 3, sd = 1)

dd$probability(x)
dd$probability(x, lower.tail = FALSE, log.p = TRUE)

Gradients of the (log-)c.d.f. or survival function with respect to parameters can be computed using diff_probability().

norm$diff_probability(x, with_params = list(mean = 3, sd = 1))

Hazard

The hazard rate is defined by $h(x, \theta) = f(x, \theta) / S(x, \theta)$, i.e., the ratio of the density to the survival function.

norm$hazard(x, with_params = list(mean = 3, sd = 1))
norm$hazard(x, log = TRUE, with_params = list(mean = 3, sd = 1))

Fitting

The fit() generic is defined for Distributions and will perform maximum likelihood estimation. It accepts a weighted, censored and truncated sample of class trunc_obs, but can automatically convert uncensored, untruncated observations without weight into the proper trunc_obs object.

# Fit with mean, sd free
fit1 <- fit(norm, x)
# Fit with mean free
fit2 <- fit(norm2, x)
# Fit with sd free
fit3 <- fit(dist_normal(mean = 3), x)

# Fitted parameters
fit1$params
fit2$params
fit3$params

# log-Likelihoods can be computed on
AIC(fit1$logLik)
AIC(fit2$logLik)
AIC(fit3$logLik)

# Convergence checks
fit1$opt$message
fit2$opt$message
fit3$opt$message

Fitting censored data

You can also fit interval-censored data.

params <- list(mean = 30, sd = 10)
x <- norm$sample(100L, with_params = params)
xl <- floor(x)
xr <- ceiling(x)

cens_fit <- fit(norm, trunc_obs(xmin = xl, xmax = xr))
print(cens_fit)

Fitting truncated data

It is possible to fit randomly truncated samples, i.e., samples where the truncation bound itself is also random and differs for each observed observation.

params <- list(mean = 30, sd = 10)
x <- norm$sample(100L, with_params = params)
tl <- runif(length(x), min = 0, max = 20)
tr <- runif(length(x), min = 0, max = 60) + tl

# truncate_obs() also truncates observations.
# if data is already truncated, use trunc_obs(x = ..., tmin = ..., tmax = ...) instead.
trunc_fit <- fit(norm, truncate_obs(x, tl, tr))
print(trunc_fit)

attr(trunc_fit$logLik, "nobs")

Plotting

Visualising different distributions, or parametrizations, e.g., fits, can be done with plot_distributions()

# Plot fitted densities
plot_distributions(
  true = norm,
  fit1 = norm,
  fit2 = norm2,
  fit3 = dist_normal(3),
  .x = seq(-2, 7, 0.01),
  with_params = list(
    true = list(mean = 3, sd = 1),
    fit1 = fit1$params,
    fit2 = fit2$params,
    fit3 = fit3$params
  ),
  plots = "density"
)

# Plot fitted densities, c.d.f.s and hazard rates
plot_distributions(
  true = norm,
  cens_fit = norm,
  trunc_fit = norm,
  .x = seq(0, 60, length.out = 101L),
  with_params = list(
    true = list(mean = 30, sd = 10),
    cens_fit = cens_fit$params,
    trunc_fit = trunc_fit$params
  )
)

# More complex distributions
plot_distributions(
  bdegp = dist_bdegp(2, 3, 10, 3),
  .x = c(seq(0, 12, length.out = 121), 1.5 - 1e-6),
  with_params = list(
    bdegp = list(
      dists = list(
        list(), list(), list(
          dists = list(
            list(
              dist = list(
                shapes = as.list(1:3),
                scale = 2.0,
                probs = list(0.2, 0.5, 0.3)
              )
            ),
            list(
              sigmau = 0.4,
              xi = 0.2
            )
          ),
          probs = list(0.7, 0.3)
        )
      ),
      probs = list(0.15, 0.1, 0.75)
    )
  )
)


Try the reservr package in your browser

Any scripts or data that you put into this service are public.

reservr documentation built on June 24, 2024, 5:10 p.m.