Nothing
### getInfluenceCurve.AUC.censoring.term.R ---
#----------------------------------------------------------------------
## Author: Thomas Alexander Gerds
## Created: Jun 4 2024 (11:47)
## Version:
## Last-Updated: Jun 13 2024 (17:28)
## By: Thomas Alexander Gerds
## Update #: 9
#----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
#----------------------------------------------------------------------
##
### Code:
getInfluenceFunction.AUC.censoring.term <- function(time,
event,
t,
IFcalculationList,
MC,
cens.model,
Wt,
auc,
nth.times){
if (cens.model[[1]] == "KaplanMeier"){
ind.controls<-rep(NA,length(time))
controls.index1 <- IFcalculationList[["controls1"]]
controls.index2 <- IFcalculationList[["controls2"]]
if ((sum(controls.index1)+sum(controls.index2)) == 0){
return(numeric(length(time)))
}
ind.controls[controls.index1] <- 1
ind.controls[controls.index2] <- 0
start.controls1 <- sindex(ind.controls[controls.index1 | controls.index2],0)
getInfluenceFunctionAUCKMCensoringTerm(time,
event,
t,
IFcalculationList[["ic0Case"]],
IFcalculationList[["ic0Control"]],
IFcalculationList[["weights"]],
IFcalculationList[["firsthit"]],
IFcalculationList[["muCase"]],
IFcalculationList[["muControls"]],
IFcalculationList[["nu"]],
Wt[1],
auc,
start.controls1)
}
else if (cens.model[[1]] == "cox"){
n <- length(time)
cases.index <- IFcalculationList[["cases"]]
controls.index <- IFcalculationList[["controls"]]
if ((sum(controls.index)+sum(controls.index)) == 0){
return(numeric(length(time)))
}
ic0Case <- IFcalculationList[["ic0Case"]]
ic0Control <- IFcalculationList[["ic0Control"]]
Phi <- IFcalculationList[["muCase"]] * IFcalculationList[["muControls"]] / (n*n)
weights <- IFcalculationList[["weights"]]
muCase <- IFcalculationList[["muCase"]]
muControls <- IFcalculationList[["muControls"]]
aucLPO <- auc
w.cases <- weights[cases.index]
w.controls <- weights[controls.index]
if (!MC$censoring.save.memory){
ic.weights <- MC[[2]][[nth.times]] ## load IF from Censoring weights
icPart <- as.numeric(rowSumsCrossprod(as.matrix(1/(Phi*n^2)*ic0Case-(aucLPO/Phi)*(1/n^2)*muControls*w.cases), ic.weights[cases.index,], 0)) +
as.numeric(rowSumsCrossprod(as.matrix(1/(Phi*n^2)*ic0Control-(aucLPO/Phi)*(1/n^2)*muCase*w.controls),ic.weights[controls.index,],0))
}
else {
wdata <- MC[[3]]
fit <- MC[[2]]
TiMinus <- MC[[4]]
ic0CaseOld <- rep(0,n)
ic0CaseOld[cases.index] <- ic0Case
ic0ControlOld <- rep(0,n)
ic0ControlOld[controls.index] <- ic0Control
controls.index1 <- IFcalculationList[["controls1"]]
controls.index2 <- IFcalculationList[["controls2"]]
Wbeforet <- (1/(Phi*n^2))*(ic0CaseOld*cases.index+ic0ControlOld*controls.index2)-
(1/n)*(aucLPO/Phi)*((cases.index)*weights*(1/n)*muControls + (controls.index2)*weights*(1/n)*muCase)
Waftert <- (1/(Phi*n^2))*ic0ControlOld*controls.index1-
(1/n)*(aucLPO/Phi)*(controls.index1)*weights*(1/n)*muCase
## First term gives for i'th entry: 1/n \sum_j weights[j] * \hat{f}_i(\tilde{T}_j-,X_j);
## Next one does: 1/n \sum_j weights[j] * \hat{f}_i(tau,X_j) for Cox
icPart <- predictCoxWeights(fit, diag=TRUE,newdata = wdata, times = TiMinus,weights=Wbeforet, isBeforeTau = TRUE, tau = t)+
predictCoxWeights(fit, diag=FALSE,newdata = wdata,times = t,weights=Waftert)
}
icPart
}
else {
warning("Censoring model not yet implemented. Reverting to conservative = TRUE for AUC. ")
0
}
}
######################################################################
### getInfluenceCurve.AUC.censoring.term.R ends here
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.