View source: R/NoiseKrigingClass.R
| simulate.NoiseKriging | R Documentation |
NoiseKriging model object.This method draws paths of the stochastic process at new input points conditional on the values at the input points used in the fit.
## S3 method for class 'NoiseKriging'
simulate(
object,
nsim = 1,
seed = 123,
x,
with_noise = NULL,
will_update = FALSE,
...
)
object |
S3 NoiseKriging object. |
nsim |
Number of simulations to perform. |
seed |
Random seed used. |
x |
Points in model input space where to simulate. |
with_noise |
Set to array of values if wish to add the noise in the simulation. |
will_update |
Set to TRUE if wish to use update_simulate(...) later. |
... |
Ignored. |
a matrix with nrow(x) rows and nsim
columns containing the simulated paths at the inputs points
given in x.
The names of the formal arguments differ from those of the
simulate methods for the S4 classes "km" and
"KM". The formal x corresponds to
newdata. These names are chosen Python and
Octave interfaces to libKriging.
Yann Richet yann.richet@asnr.fr
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.