View source: R/NoiseKrigingClass.R
update_simulate.NoiseKriging | R Documentation |
NoiseKriging
model object.This method draws paths of the stochastic process conditional on the values at the input points used in the fit, plus the new input points and their values given as argument (knonw as 'update' points).
## S3 method for class 'NoiseKriging'
update_simulate(object, y_u, noise_u, X_u, ...)
object |
S3 NoiseKriging object. |
y_u |
Numeric vector of new responses (output). |
noise_u |
Numeric vector of new noise variances (output). |
X_u |
Numeric matrix of new input points. |
... |
Ignored. |
a matrix with nrow(x)
rows and nsim
columns containing the simulated paths at the inputs points
given in x
.
Yann Richet yann.richet@irsn.fr
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
X_u <- as.matrix(runif(3))
y_u <- f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")
su <- k$update_simulate(y_u, rep(0.1^2,3), X_u)
lines(x, su[ , 1], col = "blue", lty=2)
lines(x, su[ , 2], col = "blue", lty=2)
lines(x, su[ , 3], col = "blue", lty=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.