Nothing
#' liger object of PBMC subsample data with Control and Stimulated datasets
#' @format \linkS4class{liger} object with two datasets named by "ctrl" and
#' "stim".
#' @source https://www.nature.com/articles/nbt.4042
#' @references Hyun Min Kang and et. al., Nature Biotechnology, 2018
"pbmc"
#' liger object of PBMC subsample data with plotting information available
#' @description This data was generated from data \code{"pbmc"} with default
#' parameter integration pipeline: normalize, selectGenes, scaleNotCenter,
#' runINMF, runCluster, runUMAP. To minimize the object size distributed with
#' the package, rawData and scaleData were removed. Genes are downsampled to
#' the top 50 variable genes, for smaller normData and \eqn{W} matrix.
#' @format \linkS4class{liger} object with two datasets named by "ctrl" and
#' "stim".
#' @source https://www.nature.com/articles/nbt.4042
#' @references Hyun Min Kang and et. al., Nature Biotechnology, 2018
"pbmcPlot"
#' liger object of bone marrow subsample data with RNA and ATAC modality
#' @format \linkS4class{liger} object with two dataset named by "rna" and "atac"
#' @source https://www.nature.com/articles/s41587-019-0332-7
#' @references Jeffrey M. Granja and et. al., Nature Biotechnology, 2019
"bmmc"
#' Data frame for example marker DEG test result
#' @description
#' The data frame is the direct output of marker detection DEG test applied on
#' example dataset which can be loaded with \code{data("pbmc")}. The DEG test
#' was done with:
#' ```
#' defaultCluster(pbmc) <- pbmcPlot$leiden_cluster
#' deg.marker <- runMarkerDEG(
#' pbmc,
#' minCellPerRep = 5
#' )
#' ````
#' The result is for the marker detection test for 8 clusters in the dataset by
#' comparing each cluster against all other clusters.
#' @seealso [runMarkerDEG()]
#' @format data.frame object of 1992 rows with columns:
#' \itemize{
#' \item feature: gene names, 249 unique genes repeated 8 times for the tests
#' done for 8 clusters.
#' \item group: cluster names, 8 unique cluster names, dividing the tests.
#' \item logFC: log fold change of the gene expression between the cluster of
#' interest against all other clusters.
#' \item pval: p-value of the DEG test.
#' \item padj: adjusted p-value of the DEG test.
#' \item pct_in: percentage of cells in the cluster of interest expressing the
#' gene.
#' \item pct_out: percentage of cells in all other clusters expressing the gene.
#' }
"deg.marker"
#' Data frame for example pairwise DEG test result
#' @description
#' The data frame is the direct output of pairwise DEG test applied on example
#' dataset which can be loaded with \code{importPBMC()}. Cell type annotation
#' was obtained from SeuratData package, "ifnb" dataset, since they are the
#' same. Use the following command to reproduce the same result:
#'
#' ````
#' library(rliger)
#' library(Seurat)
#' library(SeuratData)
#'
#' lig <- importPBMC()
#' ifnb <- LoadData("ifnb")
#' lig$cell_type <- ifnb$seurat_annotations
#' lig$condition_cell_type <- interaction(lig$dataset, lig$cell_type, drop = FALSE)
#' deg.pw <- runPairwiseDEG(
#' object = lig,
#' groupTest = 'stim.CD14 Mono',
#' groupCtrl = 'ctrl.CD14 Mono',
#' variable1 = 'condition_cell_type'
#' )
#' deg.pw <- deg.pw[order(deg.pw$padj)[1:1000],]
#' ```
#'
#' The result represents the statistics of DEG test between stim dataset against
#' ctrl dataset, within the CD14 monocytes. The result is randomly sampled to
#' 1000 entries for minimum demonstration.
#' @seealso [runPairwiseDEG()]
#' @format data.frame object of 1000 rows with columns:
#' \itemize{
#' \item feature: gene names.
#' \item group: class name within the variable being used for the test condition.
#' \item logFC: log fold change of the gene expression between the condition of
#' interest against the control condition.
#' \item pval: p-value of the DEG test.
#' \item padj: adjusted p-value of the DEG test.
#' \item pct_in: percentage of cells in the condition of interest expressing the
#' gene.
#' \item pct_out: percentage of cells in the control condition expressing the
#' gene.
#' }
"deg.pw"
#' Cell cycle gene set for human
#' @description
#' Copied from Seurat::cc.genes
#' @format
#' A list of two character vectors:
#' \describe{
#' \item{s.genes}{Genes associated with S-phase}
#' \item{g2m.genes}{Genes associated with G2M-phase}
#' }
#' @source https://www.science.org/doi/abs/10.1126/science.aad0501
"ccGeneHuman"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.