Rq | R Documentation |
The Rq
function is the rms
front-end to the
quantreg
package's rq
function. print
and
latex
methods are also provided, and a fitting function
RqFit
is defined for use in bootstrapping, etc. Its result is a
function definition.
For the print
method, format of output is controlled by the
user previously running options(prType="lang")
where
lang
is "plain"
(the default), "latex"
, or
"html"
. For the latex
method, html
will actually
be used of options(prType='html')
. When using html with Quarto
or RMarkdown, results='asis'
need not be written in the chunk header.
Rq(formula, tau = 0.5, data=environment(formula),
subset, weights, na.action=na.delete,
method = "br", model = FALSE, contrasts = NULL,
se = "nid", hs = TRUE, x = FALSE, y = FALSE, ...)
## S3 method for class 'Rq'
print(x, digits=4, coefs=TRUE, title, ...)
## S3 method for class 'Rq'
latex(object,
file = '', append=FALSE,
which, varnames, columns=65, inline=FALSE, caption=NULL, ...)
## S3 method for class 'Rq'
predict(object, ..., kint=1, se.fit=FALSE)
RqFit(fit, wallow=TRUE, passdots=FALSE)
formula |
model formula |
tau |
the single quantile to estimate. Unlike |
data , subset , weights , na.action , method , model , contrasts , se , hs |
see
|
x |
set to |
y |
set to |
... |
other arguments passed to one of the |
digits |
number of significant digits used in formatting results in
|
coefs |
specify |
title |
a character string title to be passed to |
object |
an object created by |
file , append , which , varnames , columns , inline , caption |
see
|
kint |
ignored |
se.fit |
set to |
fit |
an object created by |
wallow |
set to |
passdots |
set to |
Rq
returns a list of class "rms", "lassorq"
or "scadrq",
"Rq"
, and "rq"
. RqFit
returns a function
definition. latex.Rq
returns an object of class "latex"
.
The author and developer of methodology in the quantreg
package
is Roger Koenker.
Frank Harrell
rq
, prModFit
, orm
## Not run:
set.seed(1)
n <- 100
x1 <- rnorm(n)
y <- exp(x1 + rnorm(n)/4)
dd <- datadist(x1); options(datadist='dd')
fq2 <- Rq(y ~ pol(x1,2))
anova(fq2)
fq3 <- Rq(y ~ pol(x1,2), tau=.75)
anova(fq3)
pq2 <- Predict(fq2, x1)
pq3 <- Predict(fq3, x1)
p <- rbind(Median=pq2, Q3=pq3)
plot(p, ~ x1 | .set.)
# For superpositioning, with true curves superimposed
a <- function(x, y, ...) {
x <- unique(x)
col <- trellis.par.get('superpose.line')$col
llines(x, exp(x), col=col[1], lty=2)
llines(x, exp(x + qnorm(.75)/4), col=col[2], lty=2)
}
plot(p, addpanel=a)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.