Power Exponential Distribution

Share:

Description

These functions provide information about the power exponential distribution with mean parameter equal to m, dispersion equal to s, and family parameter equal to f: density, cumulative distribution, quantiles, log hazard, and random generation.

The power exponential distribution has density

f(y) = exp(-(abs(y-m)/sqrt(s))^(2 f)/2)/ (sqrt(s) Gamma(1+1/(2 f)) 2^(1+1/(2 f)))

where m is the mean of the distribution, s is the dispersion, and f is the family parameter. f=1 yields a normal distribution, f=0.5 a Laplace distribution, and f=Inf a uniform distribution.

Usage

1
2
3
4
dpowexp(y, m=0, s=1, f=1, log=FALSE)
ppowexp(q, m=0, s=1, f=1)
qpowexp(p, m=0, s=1, f=1)
rpowexp(n, m=0, s=1, f=1)

Arguments

y

vector of responses.

q

vector of quantiles.

p

vector of probabilities

n

number of values to generate

m

vector of means.

s

vector of dispersion parameters.

f

vector of family parameters.

log

if TRUE, log probabilities are supplied.

Author(s)

J.K. Lindsey

Examples

1
2
3
4
dpowexp(5, 5, 1, 2)
ppowexp(5, 5, 1, 2)
qpowexp(0.5, 5, 1, 2)
rpowexp(10, 5, 1, 2)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.