R/internals.R

Defines functions random_knn_impl is_rpforest set_forest_data rpf_knn_impl validate_nn_graph_matrix validate_nn_graph validate_are_mergeable validate_are_mergeablel is_sparse check_sparse find_margin_method get_reference_graph_k prepare_init_graph check_graph check_k .onUnload

# Internals ---------------------------------------------------------------

.onUnload <- function(libpath) {
  library.dynam.unload("rnndescent", libpath)
}

check_k <- function(k, max_k) {
  if (k > max_k) {
    stop("k must be <= ", max_k)
  }
}

check_graph <- function(idx, dist = NULL, k = NULL) {
  if (is.null(dist) && is.list(idx)) {
    dist <- idx$dist
  }
  if (is.list(idx)) {
    idx <- idx$idx
  }
  stopifnot(methods::is(idx, "matrix"))
  stopifnot(methods::is(dist, "matrix"))
  stopifnot(dim(idx) == dim(dist))
  if (is.null(k)) {
    k <- ncol(idx)
  }
  stopifnot(k > 0)
  list(idx = idx, dist = dist, k = k)
}

# data and query must be column-oriented
# recalculate_distances if TRUE even if a distance matrix is present,
# recalculate distances from data/query and the indices
# If augment_low_k = TRUE then if the desired k is > the size of the input nn
# then add random neighbors to make up the difference
prepare_init_graph <-
  function(nn,
           k,
           data,
           query = NULL,
           metric = "euclidean",
           recalculate_distances = FALSE,
           augment_low_k = TRUE,
           n_threads = 0,
           verbose = FALSE) {
    if (is.matrix(nn)) {
      nn <- list(idx = nn)
    }
    ## nn is a list dist may be NULL

    # idx has too few or too many columns
    if (k != ncol(nn$idx)) {
      if (k > ncol(nn$idx)) {
        if (!augment_low_k) {
          stop("Not enough initial neighbors provided for k = ", k)
        }
      } else if (k < ncol(nn$idx)) {
        nn$idx <- nn$idx[, 1:k, drop = FALSE]
      }
      # else k == ncol and we need do nothing
    }

    if (!is.null(nn$dist) && !recalculate_distances) {
      # dist exists and we intend to use the existing values
      if (k > ncol(nn$dist)) {
        if (!augment_low_k) {
          stop("Not enough initial distances provided for k = ", k)
        }
      } else if (k < ncol(nn$dist)) {
        nn$dist <- nn$dist[, 1:k, drop = FALSE]
      }
      # otherwise k == ncol and we need do nothing
    }

    # ensure nn$dist is not NULL and has correct distances at this point
    if (is.null(nn$dist) || recalculate_distances) {
      tsmessage("Generating distances for initial indices")
      if (!is.null(query)) {
        if (is_sparse(data)) {
          nn <- rnn_sparse_idx_to_graph_query(
            ref_ind = data@i,
            ref_ptr = data@p,
            ref_data = data@x,
            query_ind = query@i,
            query_ptr = query@p,
            query_data = query@x,
            ndim = nrow(data),
            idx = nn$idx,
            metric = metric,
            n_threads = n_threads,
            verbose = verbose
          )
        } else if (is.logical(data)) {
          nn <-
            rnn_logical_idx_to_graph_query(
              reference = data,
              query = query,
              idx = nn$idx,
              metric = metric,
              n_threads = n_threads,
              verbose = verbose
            )
        } else {
          nn <-
            rnn_idx_to_graph_query(
              reference = data,
              query = query,
              idx = nn$idx,
              metric = metric,
              n_threads = n_threads,
              verbose = verbose
            )
        }
      } else {
        if (is_sparse(data)) {
          nn <-
            rnn_sparse_idx_to_graph_self(
              ind = data@i,
              ptr = data@p,
              data = data@x,
              ndim = nrow(data),
              idx = nn$idx,
              metric = metric,
              n_threads = n_threads,
              verbose = verbose
            )
        } else if (is.logical(data)) {
          nn <-
            rnn_logical_idx_to_graph_self(
              data = data,
              idx = nn$idx,
              metric = metric,
              n_threads = n_threads,
              verbose = verbose
            )
        } else {
          nn <-
            rnn_idx_to_graph_self(
              data = data,
              idx = nn$idx,
              metric = metric,
              n_threads = n_threads,
              verbose = verbose
            )
        }
      }
    }

    # nn$idx and nn$dist exist and are either the right size or too big
    if (ncol(nn$idx) == k && ncol(nn$dist) == k) {
      return(nn)
    }

    n_aug_nbrs <- k - ncol(nn$idx)
    nn$idx <- cbind(nn$idx, matrix(0, nrow(nn$idx), ncol = n_aug_nbrs))
    nn$dist <- cbind(nn$dist, matrix(NA, nrow(nn$idx), ncol = n_aug_nbrs))

    if (ncol(nn$idx) == k && ncol(nn$dist) == k) {
      return(nn)
    }
    stop("Still not right!")
  }

get_reference_graph_k <- function(reference_graph) {
  ncol(reference_graph$idx)
}

find_margin_method <- function(margin, metric, data) {
  margin <- match.arg(tolower(margin), c("auto", "explicit", "implicit"))
  if (margin %in% c("explicit", "implicit")) {
    return(margin)
  }
  if (is.logical(data) && is_binary_metric(metric)) {
    "implicit"
  } else {
    "explicit"
  }
}

check_sparse <- function(reference, query) {
  n_sparse_input <- 0
  if (is_sparse(reference)) {
    n_sparse_input <- n_sparse_input + 1
  }
  if (is_sparse(query)) {
    n_sparse_input <- n_sparse_input + 1
  }
  if (n_sparse_input == 1) {
    stop("Either both or none of query and reference can be sparse")
  }

  # let's also check logical in here too
  n_logical <- 0
  if (is.logical(reference)) {
    n_logical <- n_logical + 1
  }
  if (is.logical(query)) {
    n_logical <- n_logical + 1
  }
  if (n_logical == 1) {
    stop("Either both or none of query and reference can be logical")
  }
}

is_sparse <- function(x) {
  methods::is(x, "sparseMatrix")
}

validate_are_mergeablel <- function(nn_graphs) {
  nn_graph1 <- nn_graphs[[1]]
  validate_nn_graph(nn_graph1)
  n_graphs <- length(nn_graphs)
  if (n_graphs > 1) {
    for (i in 2:n_graphs) {
      validate_are_mergeable(nn_graph1, nn_graphs[[i]], validate1 = FALSE)
    }
  }
}

validate_are_mergeable <-
  function(nn_graph1, nn_graph2, validate1 = TRUE) {
    if (validate1) {
      validate_nn_graph(nn_graph1)
    }
    validate_nn_graph(nn_graph2)
    nr1 <- nrow(nn_graph1$idx)
    nr2 <- nrow(nn_graph2$idx)
    if (nr1 != nr2) {
      stop("Graphs must have same number of rows, but are ", nr1, ", ", nr2)
    }
  }

validate_nn_graph <- function(nn_graph) {
  if (is.null(nn_graph$idx)) {
    stop("NN graph must contain 'idx' matrix")
  }
  if (is.null(nn_graph$dist)) {
    stop("NN graph must contain 'dist' matrix")
  }
  nr <- nrow(nn_graph$idx)
  nc <- ncol(nn_graph$idx)
  validate_nn_graph_matrix(nn_graph$dist, nr, nc, msg = "nn matrix")
}

validate_nn_graph_matrix <- function(nn, nr, nc, msg = "matrix") {
  nnr <- nrow(nn)
  nnc <- ncol(nn)
  if (nr != nnr) {
    stop(msg, " has ", nnr, " rows, should have ", nr)
  }
  if (nc != nnc) {
    stop(msg, " has ", nnc, " cols, should have ", nc)
  }
}

# called by rpf_knn and nnd_knn
rpf_knn_impl <-
  function(data,
           k,
           metric,
           use_alt_metric,
           actual_metric,
           include_self,
           ret_forest,
           leaf_size = NULL,
           max_tree_depth = 200,
           n_trees = NULL,
           margin = "auto",
           n_threads = 0,
           verbose = FALSE,
           unzero = TRUE) {
    if (is.null(n_trees)) {
      # data is transposed at this point so n_obs is in the number of columns
      n_trees <- 5 + as.integer(round(ncol(data)^0.25))
      n_trees <- min(32, n_trees)
    }
    if (is.null(leaf_size)) {
      leaf_size <- max(10, k)
    }

    margin <- find_margin_method(margin, metric, data)

    tsmessage(
      thread_msg(
        "Calculating rp tree k-nearest neighbors with k = ",
        k,
        " n_trees = ",
        n_trees,
        " max leaf size = ",
        leaf_size,
        " margin = '", margin, "'",
        n_threads = n_threads
      )
    )

    if (margin == "implicit") {
      if (is_sparse(data)) {
        res <- rnn_sparse_rp_tree_knn_implicit(
          ind = data@i,
          ptr = data@p,
          data = data@x,
          ndim = nrow(data),
          nnbrs = k,
          metric = actual_metric,
          n_trees = n_trees,
          leaf_size = leaf_size,
          max_tree_depth = max_tree_depth,
          include_self = include_self,
          ret_forest = ret_forest,
          unzero = unzero,
          n_threads = n_threads,
          verbose = verbose
        )
      } else if (is.logical(data)) {
        res <- rnn_logical_rp_tree_knn_implicit(
          data,
          k,
          actual_metric,
          n_trees = n_trees,
          leaf_size = leaf_size,
          max_tree_depth = max_tree_depth,
          include_self = include_self,
          ret_forest = ret_forest,
          unzero = unzero,
          n_threads = n_threads,
          verbose = verbose
        )
      } else {
        res <- rnn_rp_tree_knn_implicit(
          data,
          k,
          actual_metric,
          n_trees = n_trees,
          leaf_size = leaf_size,
          max_tree_depth = max_tree_depth,
          include_self = include_self,
          ret_forest = ret_forest,
          unzero = unzero,
          n_threads = n_threads,
          verbose = verbose
        )
      }
    } else {
      if (is_sparse(data)) {
        res <- rnn_sparse_rp_tree_knn_explicit(
          ind = data@i,
          ptr = data@p,
          data = data@x,
          ndim = nrow(data),
          nnbrs = k,
          metric = actual_metric,
          n_trees = n_trees,
          leaf_size = leaf_size,
          max_tree_depth = max_tree_depth,
          include_self = include_self,
          ret_forest = ret_forest,
          unzero = unzero,
          n_threads = n_threads,
          verbose = verbose
        )
      } else {
        # no logical code path here: explicit margin doesn't lend itself
        # easily to the logical-specialized metrics so if you want to do that
        # you should use implicit margin
        res <- rnn_rp_tree_knn_explicit(
          data,
          k,
          actual_metric,
          n_trees = n_trees,
          leaf_size = leaf_size,
          max_tree_depth = max_tree_depth,
          include_self = include_self,
          ret_forest = ret_forest,
          unzero = unzero,
          n_threads = n_threads,
          verbose = verbose
        )
      }
    }

    if (ret_forest) {
      res$forest <-
        set_forest_data(res$forest, use_alt_metric, metric, is_sparse(data))
    }

    # can't apply uncorrection here as we are not necessarily finishing the
    # search at this point (could be e.g. initializing NND)
    res
  }

set_forest_data <- function(forest, use_alt_metric, metric, is_sparse) {
  forest$use_alt_metric <- use_alt_metric
  forest$original_metric <- metric
  forest$sparse <- is_sparse
  forest$type <- "rnndescent:rpforest"
  forest
}

is_rpforest <- function(forest) {
  !is.null(forest$type) && forest$type == "rnndescent:rpforest"
}

# reference and query are column-oriented
random_knn_impl <-
  function(reference,
           k,
           actual_metric,
           order_by_distance,
           n_threads,
           verbose,
           query = NULL) {
    if (is.null(query)) {
      msg <- "Generating random k-nearest neighbor graph with k = "

      if (is_sparse(reference)) {
        fun <- rnn_sparse_random_knn
        args <-
          list(
            data = reference@x,
            ind = reference@i,
            ptr = reference@p,
            ndim = nrow(reference)
          )
      } else if (is.logical(reference)) {
        fun <- rnn_logical_random_knn
        args <- list(data = reference)
      } else {
        fun <- rnn_random_knn
        args <- list(data = reference)
      }
    } else {
      msg <-
        "Generating random k-nearest neighbor graph from reference with k = "

      if (is_sparse(reference)) {
        fun <- rnn_sparse_random_knn_query
        args <-
          list(
            ref_ind = reference@i,
            ref_ptr = reference@p,
            ref_data = reference@x,
            query_ind = query@i,
            query_ptr = query@p,
            query_data = query@x,
            ndim = nrow(reference)
          )
      } else if (is.logical(reference)) {
        fun <- rnn_logical_random_knn_query
        args <- list(reference = reference, query = query)
      } else {
        fun <- rnn_random_knn_query
        args <- list(reference = reference, query = query)
      }
    }

    args <- lmerge(
      args,
      list(
        nnbrs = k,
        metric = actual_metric,
        order_by_distance = order_by_distance,
        n_threads = n_threads,
        verbose = verbose
      )
    )
    tsmessage(thread_msg(msg,
      k,
      n_threads = n_threads
    ))
    res <- do.call(fun, args)
    res
  }

Try the rnndescent package in your browser

Any scripts or data that you put into this service are public.

rnndescent documentation built on May 29, 2024, 8:38 a.m.