Nothing
# /usr/bin/r
#
# Copyright 2024-2024 Steven E. Pav. All Rights Reserved.
# Author: Steven E. Pav
#
# This file is part of rnnmf.
#
# rnnmf is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# rnnmf is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with rnnmf. If not, see <http://www.gnu.org/licenses/>.
#
# Created: 2024.10.14
# Copyright: Steven E. Pav, 2024
# Author: Steven E. Pav <steven@gilgamath.com>
# Comments: Steven E. Pav
#' @title murnmf .
#'
#' @description
#'
#' Multiplicative update Non-negative matrix factorization with regularization.
#'
#' @details
#'
#' This function uses multiplicative updates only, and may not optimize the
#' nominal objective. It is also unlikely to achieve optimality.
#' This code is for reference purposes and is not suited for usage other
#' than research and experimentation.
#'
#' @param epsilon the numerator clipping value.
#' @inherit aurnmf return params details references
#' @keywords optimization
#' @template etc
#' @template poc
#' @template ref-merritt
#' @template ref-pav
#' @template ref-leeseung
#' @seealso \code{\link{aurnmf}}, \code{\link{gaurnmf}}
#' @examples
#'
#' nr <- 100
#' nc <- 20
#' dm <- 4
#'
#' randmat <- function(nr,nc,...) { matrix(pmax(0,runif(nr*nc,...)),nrow=nr) }
#' set.seed(1234)
#' real_L <- randmat(nr,dm)
#' real_R <- randmat(dm,nc)
#' Y <- real_L %*% real_R
#' # without regularization
#' objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
#' objective(Y,real_L,real_R)
#'
#' L_0 <- randmat(nr,dm)
#' R_0 <- randmat(dm,nc)
#' objective(Y,L_0,R_0)
#' out1 <- murnmf(Y, L_0, R_0, max_iterations=5e3L)
#' objective(Y,out1$L,out1$R)
#' # with L1 regularization on one side
#' out2 <- murnmf(Y, L_0, R_0, max_iterations=5e3L,lambda_1L=0.1)
#' # objective does not suffer because all mass is shifted to R
#' objective(Y,out2$L,out2$R)
#' list(L1=sum(out1$L),R1=sum(out1$R),L2=sum(out2$L),R2=sum(out2$R))
#' sum(out2$L)
#' # with L1 regularization on both sides
#' out3 <- murnmf(Y, L_0, R_0, max_iterations=5e3L,lambda_1L=0.1,lambda_1R=0.1)
#' # with L1 regularization on both sides, raw objective suffers
#' objective(Y,out3$L,out3$R)
#' list(L1=sum(out1$L),R1=sum(out1$R),L3=sum(out3$L),R3=sum(out3$R))
#'
#' \donttest{
#' # example showing how to use the on_iteration_end callback to save iterates.
#' max_iterations <- 1e3L
#' it_history <<- rep(NA_real_, max_iterations)
#' quadratic_objective <- function(Y, L, R) { sum((Y - L %*% R)^2) }
#' on_iteration_end <- function(iteration, Y, L, R, ...) {
#' it_history[iteration] <<- quadratic_objective(Y,L,R)
#' }
#' out1b <- murnmf(Y, L_0, R_0, max_iterations=max_iterations, on_iteration_end=on_iteration_end)
#' }
#'
#' # should work on sparse matrices too, but beware zeros in the initial estimates
#' if (require(Matrix)) {
#' real_L <- randmat(nr,dm,min=-1)
#' real_R <- randmat(dm,nc,min=-1)
#' Y <- as(real_L %*% real_R, "sparseMatrix")
#' L_0 <- randmat(nr,dm)
#' R_0 <- randmat(dm,nc)
#' out1 <- murnmf(Y, L_0, R_0, max_iterations=1e2L)
#' }
#'
#' @author Steven E. Pav \email{shabbychef@@gmail.com}
#' @export
murnmf <- function(Y, L, R,
W_0R=NULL, W_0C=NULL,
lambda_1L=0, lambda_1R=0,
lambda_2L=0, lambda_2R=0,
gamma_2L=0, gamma_2R=0,
epsilon=1e-7,
max_iterations=1e3L,
min_xstep=1e-9,
on_iteration_end=NULL,
verbosity=0) {
stopifnot(all(Y >= 0))
stopifnot(all(L >= 0))
stopifnot(all(R >= 0))
stopifnot((ncol(L)==nrow(R)) && (nrow(L)==nrow(Y)) && (ncol(R)==ncol(Y)))
stopifnot(missing(W_0R) || is.null(W_0R) || all(W_0R >= 0))
stopifnot(missing(W_0C) || is.null(W_0C) || all(W_0C >= 0))
stopifnot(lambda_1L >= 0)
stopifnot(lambda_1R >= 0)
stopifnot(lambda_2L >= 0)
stopifnot(lambda_2R >= 0)
stopifnot(gamma_2L >= 0)
stopifnot(gamma_2R >= 0)
fixd <- fix_LR_names(L, R)
L <- fixd$L
R <- fixd$R
# precompute
W_0R_Y <- (W_0R %**% Y)
Y_W_0C <- (Y %**% W_0C)
finished <- FALSE
k <- 0
while (!finished) {
# update L
WRt <- (W_0C %**% t(R))
RWR <- R %*% WRt
H <- lambda_1L - W_0R_Y %*% WRt
H <- pmin(H, -epsilon)
F <- (W_0R %**% L) %*% RWR + lambda_2L * L
if (gamma_2L > 0) {
F <- F + gamma_2L * times_orth(L)
}
Lprev <- L
Fok <- (F > 0) & ! is.nan(F)
L[Fok] <- -L[Fok] * (H[Fok] / F[Fok])
Lstep <- max(abs(L - Lprev))
# update R
LtW <- t(L) %**% W_0R
LWL <- LtW %*% L
H <- lambda_1R - LtW %*% Y_W_0C
H <- pmin(H, -epsilon)
F <- LWL %*% (R %**% W_0C) + lambda_2R * R
if (gamma_2R > 0) {
F <- F + gamma_2R * times_orth(R)
}
Rprev <- R
Fok <- (F > 0) & ! is.nan(F)
R[Fok] <- -R[Fok] * (H[Fok] / F[Fok])
Rstep <- max(abs(R - Rprev))
k <- k + 1
converged <- (max(c(Lstep,Rstep)) < min_xstep)
finished <- converged || (k >= max_iterations) || all(!Fok)
if (! is.null(on_iteration_end)) {
on_iteration_end(iteration=k, Y=Y, L=L, R=R, Lstep=Lstep, Rstep=Rstep, converged=converged, finished=finished)
}
}
if (verbosity > 1) {
print(paste0("terminated after ",k," iterations. converged: ",converged))
}
rownames(L) <- rownames(Y)
colnames(R) <- colnames(Y)
return(list(L=L,R=R,iterations=k,converged=converged,Lstep=Lstep,Rstep=Rstep))
}
#for vim modeline: (do not edit)
# vim:fdm=marker:fmr=FOLDUP,UNFOLD:cms=#%s:syn=r:ft=r
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.