rpf.logprob: Map an item model, item parameters, and person trait score...

Description Usage Arguments Value Examples

Description

Note that in general, exp(rpf.logprob(..)) != rpf.prob(..) because the range of logits is much wider than the range of probabilities due to limitations of floating point numerical precision.

Usage

1
rpf.logprob(m, param, theta)

Arguments

m

an item model

param

item parameters

theta

the trait score(s)

Value

a vector of probabilities. For dichotomous items, probabilities are returned in the order incorrect, correct. Although redundent, both incorrect and correct probabilities are returned in the dichotomous case for API consistency with polytomous item models.

Examples

1
2
3
4
i1 <- rpf.drm()
i1.p <- rpf.rparam(i1)
rpf.logprob(i1, c(i1.p), -1)   # low trait score
rpf.logprob(i1, c(i1.p), c(0,1))    # average and high trait score

rpf documentation built on Nov. 17, 2017, 4:27 a.m.