Nothing
setMethod("getQuan", "PcaProj", function(obj) obj@n.obs)
## The S3 version
PcaProj <- function (x, ...)
UseMethod("PcaProj")
PcaProj.formula <- function (formula, data = NULL, subset, na.action, ...)
{
cl <- match.call()
mt <- terms(formula, data = data)
if (attr(mt, "response") > 0)
stop("response not allowed in formula")
mf <- match.call(expand.dots = FALSE)
mf$... <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval.parent(mf)
## this is not a 'standard' model-fitting function,
## so no need to consider contrasts or levels
if (.check_vars_numeric(mf))
stop("PCA applies only to numerical variables")
na.act <- attr(mf, "na.action")
mt <- attr(mf, "terms")
attr(mt, "intercept") <- 0
x <- model.matrix(mt, mf)
res <- PcaProj.default(x, ...)
## fix up call to refer to the generic, but leave arg name as `formula'
cl[[1]] <- as.name("PcaProj")
res@call <- cl
# if (!is.null(na.act)) {
# res$na.action <- na.act
# if (!is.null(sc <- res$x))
# res$x <- napredict(na.act, sc)
# }
res
}
PcaProj.default <- function(x, k=0, kmax=ncol(x),
scale=FALSE, na.action = na.fail, crit.pca.distances=0.975,
trace=FALSE, ...)
{
cl <- match.call()
if(missing(x)){
stop("You have to provide at least some data")
}
data <- as.matrix(x)
n <- nrow(data)
p <- ncol(data)
##
## verify and set the input parameters: k and kmax
##
myrank <- rankMM(data)
kmax <- max(min(floor(kmax), myrank),1)
if((k <- floor(k)) < 0)
k <- 0
else if(k > kmax) {
warning(paste("The number of principal components k = ", k,
" is larger then kmax = ", kmax, "; k is set to ", kmax,".", sep=""))
k <- kmax
}
if(k != 0)
k <- min(k, ncol(data))
else {
k <- min(kmax, ncol(data))
if(trace)
cat("The number of principal components is defined by the algorithm. It is set to ", k,".\n", sep="")
}
if(is.logical(scale)) {
scale <- if(scale) sd else NULL
}
out <- PCAproj(data, k, scale=scale, ...)
center <- out$center
scale <- out$scale
sdev <- out$sdev
loadings <- as.matrix(out$loadings[, 1:k])
## VT::31.07.2020
## scores <- predict(out)
## scores <- as.matrix(scores[, 1:k])
scores <- (data - matrix(rep(center, nrow(data)), nrow = nrow(data), byrow = TRUE)) %*% loadings
eigenvalues <- (sdev^2)[1:k]
######################################################################
names(eigenvalues) <- NULL
if(is.list(dimnames(data)))
rownames(scores) <- rownames(data) # dimnames(scores)[[1]] <- dimnames(data)[[1]]
dimnames(scores)[[2]] <- paste("PC", seq_len(ncol(scores)), sep = "")
dimnames(loadings) <- list(colnames(data), paste("PC", seq_len(ncol(loadings)), sep = ""))
## fix up call to refer to the generic, but leave arg name as `formula'
cl[[1]] <- as.name("PcaProj")
res <- new("PcaProj", call=cl,
rank=myrank,
loadings=loadings,
eigenvalues=eigenvalues,
center=center,
scale=scale,
scores=scores,
k=k,
n.obs=n)
## Compute distances and flags
res <- pca.distances(res, data, p, crit.pca.distances)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.