R/tukey_hsd.R

Defines functions replace_contrast_colname_by_comparison fct_replace_minus revert_back_eventual_minus_symbols replace_eventual_minus_symbols_in_factors tukey_hsd_of_model tukey_hsd_core tukey_hsd.data.frame tukey_hsd.lm tukey_hsd.default tukey_hsd

Documented in tukey_hsd tukey_hsd.data.frame tukey_hsd.default tukey_hsd.lm

#' @include utilities.R
#' @importFrom stats TukeyHSD
#' @importFrom dplyr everything
#' @importFrom tidyr separate
NULL
#'Tukey Honest Significant Differences
#'
#'
#'@description Provides a pipe-friendly framework to performs Tukey post-hoc
#'  tests. Wrapper around the function \code{\link[stats]{TukeyHSD}()}. It is
#'  essentially a t-test that corrects for multiple testing.
#'
#'  Can handle different inputs formats: aov, lm, formula.
#'@param x an object of class \code{aov}, \code{lm} or \code{data.frame}
#'  containing the variables used in the formula.
#'@param data a data.frame containing the variables in the formula.
#'@param formula a formula of the form \code{x ~ group} where \code{x} is a
#'  numeric variable giving the data values and \code{group} is a factor with
#'  one or multiple levels giving the corresponding groups. For example,
#'  \code{formula = TP53 ~ cancer_group}.
#'@param ... other arguments passed to the function
#'  \code{\link[stats]{TukeyHSD}()}. These include: \itemize{ \item
#'  \strong{which}: A character vector listing terms in the fitted model for
#'  which the intervals should be calculated. Defaults to all the terms. \item
#'  \strong{ordered}: A logical value indicating if the levels of the factor
#'  should be ordered according to increasing average in the sample before
#'  taking differences. If ordered is true then the calculated differences in
#'  the means will all be positive. The significant differences will be those
#'  for which the lwr end point is positive. }
#'@return a tibble data frame containing the results of the different
#'  comparisons.
#' @examples
#' # Data preparation
#' df <- ToothGrowth
#' df$dose <- as.factor(df$dose)
#' # Tukey HSD from ANOVA results
#' aov(len ~ dose, data = df) %>% tukey_hsd()
#'
#' # two-way anova with interaction
#' aov(len ~ dose*supp, data = df) %>% tukey_hsd()
#'
#' # Tukey HSD from lm() results
#' lm(len ~ dose, data = df) %>% tukey_hsd()
#'
#' # Tukey HSD from data frame and formula
#' tukey_hsd(df, len ~ dose)
#'
#' # Tukey HSD using grouped data
#' df %>%
#'   group_by(supp) %>%
#'   tukey_hsd(len ~ dose)
#'
#'@export
tukey_hsd <- function(x, ...){
  UseMethod("tukey_hsd", x)
}


#' @export
#' @describeIn tukey_hsd performs tukey post-hoc test from \code{aov()} results.
tukey_hsd.default <- function(x, ...)
{
  tukey_hsd_of_model(x, ...) %>%
    set_attrs(args = list(x = x, p.adjust.method = "Tukey", method = "tukey_hsd")) %>%
    add_class(c("rstatix_test", "tukey_hsd"))
}

#' @export
#' @describeIn tukey_hsd performs tukey post-hoc test from \code{lm()} model.
tukey_hsd.lm <- function(x, ...)
{
  stats::aov(x) %>% tukey_hsd.default(...)
}


#' @describeIn tukey_hsd performs tukey post-hoc tests using data and formula as
#'   inputs. ANOVA will be automatically performed using the function
#'   \code{\link[stats]{aov}()}
#' @export
tukey_hsd.data.frame <- function(x, formula, ...){
  args <- list(
    data = x, formula = formula, method = "tukey_hsd",
    p.adjust.method = "Tukey"
    )
  if(is_grouped_df(x)){
    results <- x %>%
      doo(tukey_hsd_core, formula, ...) %>%
      set_attrs(args = args) %>%
      add_class(c("rstatix_test", "tukey_hsd"))
    return(results)
  }

  tukey_hsd_core (x, formula) %>%
    set_attrs(args = args) %>%
    add_class(c("rstatix_test", "tukey_hsd"))
}


tukey_hsd_core <- function(x, formula, ...){
  stats::aov(formula, x) %>%
    tukey_hsd_of_model(...)
}

tukey_hsd_of_model <- function(model, ...){
  comparison <- adj.p.value <- p.adj <-
    term <- group1 <- group2 <- NULL
  magic.text <- "_XX.MAGIC.XX_"
  model %>%
    replace_eventual_minus_symbols_in_factors(by = magic.text) %>%
    TukeyHSD( ...) %>%
    broom::tidy() %>%
    replace_contrast_colname_by_comparison() %>%
    separate(comparison, into= c("group2", "group1"), sep = "-") %>%
    revert_back_eventual_minus_symbols(magic.text) %>%
    rename(p.adj = adj.p.value) %>%
    mutate(p.adj = signif(p.adj, 3)) %>%
    select(term, group1, group2, everything()) %>%
    add_significance("p.adj")
}


# Handling possible minus symbols in factor levels
replace_eventual_minus_symbols_in_factors <- function(res.aov, by = "_XX.MAGIC.XX_"){
  res.aov$model <- res.aov$model %>%
    dplyr::mutate_if(is.factor, fct_replace_minus, by = by)
  res.aov
}
revert_back_eventual_minus_symbols <- function(res.tukey.df, magic.text = "_XX.MAGIC.XX_" ){
  res.tukey.df %>%
    mutate(
      group1 = gsub(magic.text, replacement = "-", .data$group1, fixed = TRUE),
      group2 = gsub(magic.text, replacement = "-", .data$group2, fixed = TRUE)
    )
}

fct_replace_minus <- function(.factor, by = "_XX.MAGIC.XX_"){
  new.levels <- gsub(
    pattern = "-", replacement = by,
    x = levels(.factor), fixed = TRUE
    )
  levels(.factor) <- new.levels
  .factor
}

# in broom v>= 0.7.0; contrast is used instead of comparison
# so this helper function ensures that "comparison" is used as
# column name no matter the version of broom
replace_contrast_colname_by_comparison <- function(data){
  if("contrast" %in% colnames(data)){
    data <- data %>% rename(comparison = .data$contrast)
  }
  data
}

Try the rstatix package in your browser

Any scripts or data that you put into this service are public.

rstatix documentation built on Feb. 16, 2023, 6:10 p.m.