R/rbmf.O2.R

Defines functions rbmf.O2

Documented in rbmf.O2

#' Simulate a \code{2*2} Orthogonal Random Matrix
#' 
#' Simulate a \code{2*2} random orthogonal matrix from the Bingham-von
#' Mises-Fisher distribution using a rejection sampler.
#' 
#' 
#' @param A a symmetric matrix.
#' @param B a diagonal matrix with decreasing entries.
#' @param C a 2x2 matrix.
#' @param env which rejection envelope to use, Bingham (\code{bingham}) or von
#' Mises-Fisher (\code{mf})?
#' @return A random 2x2 orthogonal matrix simulated from the Bingham-von
#' Mises-Fisher distribution.
#' @author Peter Hoff
#' @references Hoff(2009)
#' @examples
#' 
#' ## The function is currently defined as
#' function (A, B, C, env = FALSE) 
#' {
#'     sC <- svd(C)
#'     d1 <- sum(sC$d)
#'     eA <- eigen(A)
#'     ab <- sum(eA$val * diag(B))
#'     if (d1 <= ab | env == "bingham") {
#'         lrmx <- sum(sC$d)
#'         lr <- -Inf
#'         while (lr < log(runif(1))) {
#'             X <- rbing.O2(A, B, a = (eA$val[1] - eA$val[2]) * 
#'                 (B[1, 1] - B[2, 2]), E = eA$vec)
#'             lr <- sum(diag(t(X) %*% C)) - lrmx
#'         }
#'     }
#'     if (d1 > ab | env == "mf") {
#'         lrmx <- sum(eA$val * sort(diag(B), decreasing = TRUE))
#'         lr <- -Inf
#'         while (lr < log(runif(1))) {
#'             X <- rmf.matrix(C)
#'             lr <- sum(diag(B %*% t(X) %*% A %*% X)) - lrmx
#'         }
#'     }
#'     X
#'   }
#' 
#' @export rbmf.O2
rbmf.O2 <-
function(A,B,C,env=FALSE)
{
  sC<-svd(C)
  d1<-sum(sC$d)
  eA<-eigen(A) 
  ab<-sum(eA$val*diag(B)) 

  ### if Bingham part dominates, use Bingham envelope
  if(d1<=ab | env=="bingham")   
  {
    lrmx<-sum(sC$d) ; lr<- -Inf
    while(lr<log(runif(1)))
    {      
      X<-rbing.O2(A,B,a=(eA$val[1]-eA$val[2])*(B[1,1]-B[2,2]),E=eA$vec)
      lr<-sum(diag(t(X)%*%C)) - lrmx
    }
  }   
  ###

  ### if MF part dominates, use MF envelope
  if(d1>ab | env=="mf")  
  {
    lrmx<-sum(eA$val*sort(diag(B),decreasing=TRUE)) ; lr<- -Inf  
    while(lr< log(runif(1)))
    {
      X<-rmf.matrix(C)
      lr<-sum(diag(B%*%t(X)%*%A%*%X)) - lrmx
    }
  }
  ###

  X
}

Try the rstiefel package in your browser

Any scripts or data that you put into this service are public.

rstiefel documentation built on June 12, 2018, 5:19 p.m.