Nothing
get_ordered_probs <- function(RAW_MODEL, form) {
if (form == 1) {
# Npaths <- nchar(RAW_MODEL$resp$MDL) - nchar(gsub("[+]", "", RAW_MODEL$resp$MDL)) + 1
# max_paths <- max(Npaths)
# path_df <- matrix(data = NA, nrow = length(Npaths), ncol = max_paths)
# for (i in 1:length(Npaths)) {
# paths_string <- strsplit(RAW_MODEL$resp$MDL[i], "[+]")[[1]]
# if (Npaths[i] != max_paths) {paths_string <- c(paths_string, rep("", max_paths-Npaths[i]))}
# path_df[i,] <- paths_string
# }
#
# Nprobs <- apply(X = path_df, MARGIN = 2, FUN = function(x) {nchar(x) - nchar(gsub("[*]", "", x)) + 1})
# max_probs <- max(Nprobs)
# probs_df <- matrix(data = NA, nrow = length(Npaths), ncol = max_paths*max_probs)
# for (i in 1:dim(path_df)[2]) {
# ind_start <- max_probs*(i-1)+1
# ind_end <- max_probs*i
# probs_string <- gsub(pattern = "[)]", replacement = "", x = gsub(pattern = "[(1-]", replacement = "", x = path_df[,i]))
# probs_temp <- sapply(X = probs_string, FUN = function(x) {strsplit(x, "[*]")[[1]]})
# probs_df[, ind_start:ind_end] <- t(sapply(X = probs_temp, FUN = function(x) {if (length(x) != max_probs) {c(x, rep("", max_probs-length(x)))} else x}))
# }
#
#
# temp <- as.vector(probs_df)
# ind <- which(temp == "")
# vec <- temp[-ind]
vec <- as.character(unlist(sapply(X = RAW_MODEL$resp$MDL, FUN = function(x) {strsplit(x = gsub(pattern = "\\)", replacement = "", x = gsub(pattern = "\\(1-", replacement = "", x = x)), split = "[*]")[[1]]})))
ordered_probs <- sort(unique(as.character(unlist(sapply(X = vec, FUN = function(x) {strsplit(x = x, split = "[+]")[[1]]})))))
} else if (form == 2) {
# unique_TREE_CAT <- unique(RAW_MODEL$eqn[, c(1,2)])
# max_len <- max(sapply(X = RAW_MODEL$eqn$EQN, FUN = function(x) {length(strsplit(x, "[*]")[[1]])}))
# probs_list_unordered <- lapply(X = RAW_MODEL$eqn$EQN, FUN = function(x) {
# vec <- rep("", max_len);
# y1 <- gsub("[(1-]", "", x);
# y2 <- gsub("[)]", "", y1); cc <- strsplit(y2, "[*]")[[1]];
# vec[1:length(cc)] <- cc; return(vec)
# })
# max_len_tot <- max_len*max(sapply(X = unique_TREE_CAT[,2], FUN = function(x) {length(which(RAW_MODEL$eqn$CAT == x))}))
# probs_list <- lapply(X = seq(1,dim(unique_TREE_CAT)[1]), FUN = function(x) {
# vec <- c();
# ind1 <- which(RAW_MODEL$eqn[, 1]==unique_TREE_CAT[x, 1]);
# ind2 <- which(RAW_MODEL$eqn[, 2]==unique_TREE_CAT[x, 2]);
# ind <- intersect(ind1, ind2);
# vec <- unlist(lapply(X = ind, FUN = function(x) {probs_list_unordered[[x]]}));
# if (length(vec == max_len_tot)) vec <- c(vec, rep("", (max_len_tot-length(vec))));
# return(vec)
# })
# vec <- c()
# for (j in 1:max_len_tot) {
# for (i in 1:length(probs_list)) {
# if (probs_list[[i]][j] != "") vec <- c(vec, probs_list[[i]][j])
# }
# }
ordered_probs <- sort(unique(as.character(unlist(sapply(X = RAW_MODEL$eqn$EQN, FUN = function(x) {strsplit(x = gsub(pattern = "\\)", replacement = "", x = gsub(pattern = "\\(1-", replacement = "", x = x)), split = "[*]")[[1]]})))))
}
# ordered_probs <- unique(vec)
# CONTROLS
# WARNINGS FOR NOT MATCHING PROBABILITY PARAMETERS
if ("const_probs" %in% names(RAW_MODEL)) {
const_probs <- RAW_MODEL$const_probs
for ( i in 1:length(const_probs)) {
if (grepl(pattern = "=", x = const_probs[i])) {
ending <- unlist(gregexpr(pattern = "=", const_probs[i]))-1
const_probs[i] <- substring(text = const_probs[i], first = 1, last = ending)
}
if (!(const_probs[i] %in% ordered_probs)) {
warning("Definition of const_probs contain process name that is not in equations.\n Found \"", const_probs[i], "\" not to be used in equations. It will be ignored.")
}
}
# for ( i in 1:length(ordered_probs)) {
# if (!(ordered_probs[i] %in% const_probs)) {
# warning("Equations contain more probability parameters than definition of const_probs.\n Found \"", unlist(probs_list)[i], "\" not in definition. It will be included with default value.")
# }
# }
}
return(ordered_probs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.