dpower | R Documentation |
Density, distribution function, quantile function and random generation for discrete
version of power distribution with parameter s
.
dpower( x, s, log=FALSE)
ppower( q, s, lower.tail=TRUE, log.p=FALSE)
qpower( p, s, lower.tail= TRUE, log.p=FALSE)
rpower( n, s, bissection = FALSE, ...)
x |
vector of (integer x>0) quantiles. In the context of species abundance distributions, this is a vector of abundances of species in a sample. |
q |
vector of (integer x>0) quantiles. In the context of species abundance distributions, a vector of abundances of species in a sample. |
n |
number of random values to return. |
p |
vector of probabilities. |
s |
positive real s > 1; exponent of the power distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
bissection |
logical; uses the bissection method to generate random numbers? If
FALSE calls |
... |
further arguments to be passed to |
The power density is a discrete probability distribution defined for integer x > 0:
p(x) = \frac{x^{-s}}{\zeta (s)}
Hence p(x) is proportional to a
negative power of 'x', given by the 's' exponent. The Riemann's \zeta
function is the integration constant.
The power distribution can be used as a species abundance distribution (sad) model, which describes the probability of the abundance 'x' of a given species in a sample or assemblage of species.
dpower
gives the (log) density of the density, ppower
gives the (log)
distribution function, qpower
gives the quantile function.
Invalid values for parameter s
will result in return
values NaN
, with a warning.
Paulo I Prado prado@ib.usp.br and Murilo Dantas Miranda.
Johnson N. L., Kemp, A. W. and Kotz S. (2005) Univariate Discrete Distributions, 3rd edition, Hoboken, New Jersey: Wiley. Section 11.2.20.
Colin S. Gillespie (2015) Fitting Heavy Tailed Distributions: The poweRlaw Package. Journal of Statistical Software, 64(2), 1-16. URL http://www.jstatsoft.org/v64/i02/.
dzeta
in VGAM package; poweRlaw package;
fitpower
for maximum likelihood estimation in the context of species abundance distributions.
x <- 1:20
PDF <- dpower(x=x, s=2)
CDF <- ppower(q=x, s=2)
par(mfrow=c(1,2))
plot(x,CDF, ylab="Cumulative Probability", type="b",
main="Power distribution, CDF")
plot(x,PDF, ylab="Probability", type="h",
main="Power distribution, PDF")
par(mfrow=c(1,1))
## The power distribution is a discrete PDF, hence:
all.equal( ppower(10, s=2), sum(dpower(1:10, s=2)) ) # should be TRUE
## quantile is the inverse of CDF
all.equal(qpower(CDF, s=2), x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.