Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = TRUE
)
## ----setup--------------------------------------------------------------------
library(samplr)
## ----echo=FALSE---------------------------------------------------------------
abbrev_cont <- c("unif", "norm","lnorm", "gamma", "beta", "nbeta", "chisq", "nchisq", "t", "nt", "f", "nf", "cauchy", "exp", "logis", "weibull",
"4beta", "lst", "truncnorm", "trunct", "trunclst", "triangular")
for (i in 1:length(abbrev_cont)){abbrev_cont[i] <- paste("*", abbrev_cont[i],"*", sep="")}
name_cont <- c("Uniform", "Normal","Lognormal", "Gamma", "Beta", "Non-central Beta", "Chi-squared", "Non-central Chi-squared", "t", "Non-central t", "F", "Non-central F", "Cauchy", "Exponential", "Logistic", "Weibull",
"4-parameter Beta", "Location-scale t", "Truncated Normal", "Truncated t", "Truncated Location-scale t", "Triangular")
for (i in 1:length(name_cont)){name_cont[i] <- paste(name_cont[i],"Distribution")}
parameters <- c(
"`min`, `max`", # "unif",
"`mean`, `sd`",# "norm",
"`log_mean`, `log_sd`", # "lnorm",
"`shape`, `scale`", # "gamma",
"`shape1`,`shape2`", # "beta",
"`shape1`,`shape2`, `ncp`", # "nbeta",
"`df`", # "chisq",
"`df`, `ncp`", # "nchisq",
"`df`", # "t",
"`df`, `ncp`", # "nt",
"`df1`, `df2`", # "f",
"`df1`, `df2`, `ncp`", # "nf",
"`location`, `scale`, ", # "cauchy",
"`rate`", # "exp",
"`location`, `scale`", # "logis",
"`shape`, `scale`",# "weibull",
"`shape1`,`shape2`, `minumum`, `maximum`", # "4beta",
"`df`, `location`, `scale`, ", # "lst",
"`mean`, `sd`, `low_bound`, `high_bound`", # "truncnorm",
"`df`, `low_bound`, `high_bound`", # "trunct",
"`df`, `location`, `scale`, `low_bound`, `high_bound`", # "trunclst",
"`lower_limit`, `upper_limit`, `mode`"# "triangular"
)
X <- data.frame(abbrev_cont, name_cont, parameters)
names(X) <- c("Abbreviation", "Distribution Name", "Parameters")
knitr::kable(X)
## ----echo=FALSE---------------------------------------------------------------
abbr_discr <- c("binom", "nbinom", "nbinom_mu", "pois", "geom", "hyper", "wilcox", "signrank")
for (i in 1:length(abbr_discr)){abbr_discr[i] <- paste("*", abbr_discr[i],"*", sep="")}
name_discr <- c("Binomial", "Negative Binomial", "Negative Binomial", "Poisson", "Geometric", "Hypergeometric", "Wilcoxon rank-sum test statistic", "Wilcoxon signed-rank test statistic")
for (i in 1:length(name_discr)){
if ((name_discr[i] != "Wilcoxon rank-sum test statistic") && (name_discr[i] != "Wilcoxon signed-rank test statistic")){
name_discr[i] <- paste(name_discr[i],"Distribution")
} else{
name_discr[i] <- paste("Distribution of", name_discr[i])
}
if (i == 2){
name_discr[i] <- paste(name_discr[i],"(with success probability as parameter)")
}
else if (i == 3){
name_discr[i] <- paste(name_discr[i],"(with mean as parameter)")
}
}
parameters_discr <-c(
"`size`, `success_prob`", # Binomial",
"`size`, `success_prob`", # Non-central Binomial",
"`size`, `mean`", # Negative binomial",
"`lambda`", # Poisson",
"`success_prob`", # Geometric",
"`number_successes`, `number_failures`, `number_samples`", # Hypergeometric",
"`number_samples1`, `number_samples2`", # Wilcoxon rank-sum test statistic",
"`number_samples`" # Wilcoxon signed-rank test statistic"
)
X <- data.frame(abbr_discr, name_discr, parameters_discr)
names(X) <- c("Abbreviation", "Distribution Name", "Parameters")
knitr::kable(X)
## ----echo=FALSE---------------------------------------------------------------
abbrev_cont_mv <- c("mvnorm", "mvt")
for (i in 1:length(abbrev_cont_mv)){abbrev_cont_mv[i] <- paste("*", abbrev_cont_mv[i],"*", sep="")}
name_cont_mv <- c("Multivariate Normal", "Multivariate t")
for (i in 1:length(name_cont)){name_cont[i] <- paste(name_cont[i],"Distribution")}
parameters_cont_mv <- c(
"`mean` (vector); `covariance_matrix` (matrix)", # Multivariate Normal",
"`location` (vector); `scale_matrix` (matrix), `df` (number)" # Multivariate t"
)
X <- data.frame(abbrev_cont_mv, name_cont_mv, parameters_cont_mv)
names(X) <- c("Abbreviation", "Distribution Name", "Parameters")
knitr::kable(X)
## -----------------------------------------------------------------------------
X <- sampler_mh(
start = 0, # starting point for the sampler
distr_name = "truncnorm", # Use abbreviation in distr_name
distr_params = c(0,1,-5,0), # provide distribution parameters as a vector for univariate distributions
sigma_prop = 1, # variance of the proposal distribution
)
hist(X[[1]])
## -----------------------------------------------------------------------------
X <- sampler_hmc(
start = c(0,0),
distr_name = "mvnorm", # as before
list(c(0,0), diag(2)), # provide distribution parameters as a list for multivariate distributions
)
x <- X[[1]][,1]
y <- X[[1]][,2]
plot(x,y)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.