Nothing
#' Implements the geometric spatial transfer of statistics from Spanish postal code areas to census sections
#'
#' @description Transfers the statistics available in a set of Spanish postal codes to the corresponding
#' spatial set of Spanish official census sections into force in a given year.
#'
#' @author Jose M. Pavia, \email{pavia@@uv.es}
#' @author Virgilio Perez \email{virgilio.perez@@uv.es}
#' @references Goerlich, FJ (2022). Elaboracion de un mapa de codigos postales de Espana con recursos libres. Como evitar pagar a Correos 6000 euros por informacion de referencia. Working Papers Ivie n. 2022-3. Valencia: Ivie. \doi{10.12842/WPIVIE_0322}
#' @references Pavia, JM and Cantarino, I (2017a). Can dasymetric mapping significantly improve population data reallocation in a dense urban area? *Geographical Analysis*, 49(2), 155-174. \doi{10.1111/gean.12112}
#' @references Pavia, JM and Cantarino, I (2017b). Dasymetric distribution of votes in a dense city. *Applied Geography*, 86, 22-31. \doi{10.1016/j.apgeog.2017.06.021}
#' @references Perez, V and Pavia, JM (2024a). Improving Accuracy in Geospatial Information Transfer: A Population Density-Based Approach, in *6th International Conference on Advanced Research Methods and Analytics (CARMA 2024)*, Editorial Universitat Politecnica de Valencia, pp. 326-333. \doi{10.4995/CARMA2024.2024.17796}
#' @references Perez, V and Pavia, JM (2024b) Automating the transfer of data between census sections and postal codes areas over time. An application to Spain. *Investigaciones Regionales - Journal of Regional Research*, forthcoming. \doi{10.38191/iirr-jorr.24.057}
#'
#' @param x A data frame of order N x K (with K > 1) with the statistics to be spatially transferred/imputed.
#' The first column must contains the codes of the postal code areas to which the statistics belong to. The statistical nature
#' of the data columns must be of the same type. See the argument `data.type`.
#'
#' @param year An integer number. Reference year of the census sections to which the statistics are going to be transferred.
#' Only 2001 and 2003 to 2023 are allowed.
#'
#' @param data.type A character string indicating the type of data to be transferred, either `"counts"` (aggregate statistics)
#' or `"averages"` (mean, proportion or rate statistics). Default `"counts"`.
#'
#' @param all.units A `TRUE/FALSE` value indicating the census section units of the destination division to be included
#' in the output data frame. If `TRUE` all the units of the destination division are included. If `FALSE` only
#' those units for which a value is imputed are included. Default, `FALSE`.
#'
#' @param na.rm A `TRUE/FALSE` logical value indicating whether `NA` values should be stripped before
#' the computations proceed. Default, `TRUE`.
#'
#' @param ... Other arguments to be passed to the function. Not currently used.
#'
#' @note The data that allows to transfer statistics among census sections
#' and/or postal code areas has been own elaboration by the authors using (i)
#' the Spanish Digital Cartography Files available in http://www.ine.es
#' that contain the digitalisation of the georeferenced polygons of the
#' census sections, according to UTM coordinates 28, 29, 30 and 31, and (ii)
#' the Cartography File of postal code areas developed by Goerlich (2022).
#' @note Neither The Spanish Statistical Office (Instituto Nacional de EstadÃstica) nor
#' Professor Goerlich had any involvement in preparing this package. They bear no responsibility on the results derived from using this package.
#' @note Postal code areas have 2019 as reference year. It must be noted, however,
#' that they can be considered as almost time stationary. Spanish postal code areas are quite
#' stable over time.
#'
#' @return
#' A list with the following components
#' \item{df}{ A data frame with the statistics spatially transferred to the census sections corresponding to the `year.sscc.dest` division.}
#' \item{missing}{ A vector with the codes of the postal code areas included in `x` that are not available in the shp file of postal code area division.}
#'
#' @export
#'
#' @seealso \code{\link{sc2cp}} \code{\link{sc2sc}}
#' @importFrom stats aggregate
#'
#' @examples
#' data <- structure(list(CCPP = c(1120L, 1160L, 1250L, 1212L, 1213L),
#' income = c(15000L, 12000L, 11500L,
#' 13000L, 12500L)),
#' class = "data.frame", row.names = c(NA, -5L))
#' example <- cp2sc(x = data, year = 2014, data.type = "averages")
cp2sc <- function(x,
year,
data.type = "counts",
all.units = FALSE,
na.rm = TRUE,
...){
if (!is.data.frame(x)){
stop("ERROR: 'x' must be an object of class data.frame")
} else {
x <- as.data.frame(x)
}
#inputs <- c(as.list(environment()), list(...))
if (!(year %in% c(2001L, 2003L:2023L)))
stop("ERROR: The reference year for the census sections is not allowed. Only 2001 or 2003 to 2023 is allowed.")
if (!(data.type %in% c("counts", "averages")))
stop("ERROR: The argument 'data.type' is improper. Only 'counts' and 'averages' are allowed.")
testeo <- test_ccpp_codes(bbdd = x)
bbdd <- testeo$bbdd
# CCPP to SSCC 2019
if (data.type == "counts"){
transfer_function <- ccpp2sscc_total
} else {
transfer_function <- ccpp2sscc_average
}
bbdd <- transfer_function(bbdd = bbdd,
all.units = all.units,
na.rm = na.rm)
# SSCC 2019 to SSCC year
if (year != 2019L){
years <- 2019L:year
years <- years[years != 2002]
if (data.type == "counts"){
transfer_function <- impute_total
} else {
transfer_function <- impute_average
}
for (aa in 1L:(length(years) - 1L)){
bbdd <- transfer_function(bbdd = bbdd,
y.origin = years[aa],
y.dest = years[aa + 1L],
all.units = all.units,
na.rm = na.rm)
}
}
#return(list("df" = bbdd, "missing" = testeo$missing, "inputs" = inputs))
return(list("df" = bbdd, "missing" = testeo$missing))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.